精英家教网 > 高中数学 > 题目详情
已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则CD=
2
2
分析:利用面面垂直的性质可得线面垂直,进而得到△ACB与△BDC为直角三角形,设CD=x,结合勾股定理列方程求x.
解答:解:连接BC,∵AC⊥l,α⊥β,α∩β=l,
∴AC⊥β,BC?β,∴AC⊥BC,
同理BD⊥α,CD?α,BD⊥CD,
设CD=x,BC2=12+x2
AB2=BC2+AC2=1+1+x2=4,
∴x=
2

故答案是
2
点评:本题借助求距离问题,考查了面面垂直的性质,准确的画出图形是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于(  )
A、
2
3
B、
3
3
C、
6
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=(  )
A、2
B、
3
C、
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于
6
3
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,AC=BD=1,CD=2,异面直线AB与CD所成的角等于
arccos
6
3
arccos
6
3
(用反余弦表示)

查看答案和解析>>

同步练习册答案