【题目】一项针对某一线城市30~50岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:
(1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.
(2)把购买六类高价商品的金额不低于5000元的中年人称为“高收入人群”,根据已知条件完成22列联表,并据此判断能否有95%的把握认为“高收入人群”与性别有关?
参考公式:,其中
参考附表:
【答案】(1)(2)见解析,有95%的把握认为“高收入人群”与性别有关.
【解析】
先得到相应范围的频数,然后利用频率得到概率即可;
根据列联表内的已有数据,结合题中表格数据,计算出其他数据,完成列联表,代入公式,计算出观测值,参照临界值表即可作出判断.
(1)该城市中年人购买六类高价商品的金额不低于5000元的频数为:
,
所以该城市中年人购买六类高价商品的金额不低于5000元的概率为:.
(2)根据频数分布表得:高收入人群中女性有140人,男性有180人,
非高收入人群中女性有60人,男性有120人,
完成列联表如下:
高收入人群 | 非高收入人群 | 合计 | |
女 | 140 | 60 | 200 |
男 | 180 | 120 | 300 |
合计 | 320 | 180 | 500 |
根据列联表中的数据,计算得
故有95%的把握认为“高收入人群”与性别有关.
科目:高中数学 来源: 题型:
【题目】某学校为准备参加市运动会,对本校甲、乙两个田径队中名跳高运动员进行了测试,并用茎叶图表示出本次测试人的跳高成绩(单位:).跳高成绩在以上(包括)定义为“合格”,成绩在以下(不包括)定义为“不合格”.鉴于乙队组队晚,跳高成绩相对较弱,为激励乙队队队,学校决定只有乙队中“合格”者才能参加市运动会开幕式旗林队.
(1)求甲队队员跳高成绩的中位数;
(2)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取人,则人中“合格”与“不合格”的人数各为多少;
(3)若从所有“合格”运动员中选取名,用表示所选运动员中能参加市运动会开幕式旗林队的人数,试求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定下列四个命题
若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
若一条直线和两个互相垂直的平面中的一个平面垂直,那么这条直线一定平行于另一个平面;
若一条直线和两个平行平面中的一个平面垂直,那么这条直线也和一个平面垂直;
若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,
其中,真命题的个数是
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在国家积极推动美丽乡村建设的政策背景下,各地根据当地生态资源打造了众多特色纷呈的乡村旅游胜地.某人意图将自己位于乡村旅游胜地的房子改造成民宿用于出租,在旅游淡季随机选取100天,对当地已有的六间不同价位的民宿进行跟踪,统计其出租率(),设民宿租金为(单位:元/日),得到如图所示的数据散点图.
(1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.
(2)①根据散点图判断,与哪个更适合于此模型(给出判断即可,不必说明理由)?根据判断结果求回归方程;
②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出的固定成本,若民宿出租,则每天需要再付出的日常支出成本.试用①中模型进行分析,旅游淡季民宿租金约定为多少元时,该民宿在这280天的收益达到最大?
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为;.
参考数据:记,,,,
,,
,,
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com