精英家教网 > 高中数学 > 题目详情
6.正三棱锥的侧棱长为2$\sqrt{3}$,侧棱与底面所成的角为60°,则该棱锥的体积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

分析 可作正三棱锥S-ABC,取底面中心为O,BC中点为D,连接SO,BO,OD,容易说明∠SBO=60°,并且∠OBD=30°,从而根据侧棱长可以分别求出该正三棱锥的高SO,底面正三角形的边长,从而可以求出底面面积,根据三棱锥的体积公式即可得出该三棱锥的体积.

解答 解:如图,正三棱锥S-ABC,底面中心为O,取BC中点D,连接SO,BO,OD,则:

SO⊥底面ABC,OD⊥BC;
∴∠SBO为侧棱SB和底面ABC所成角为60°;
∴∠SBO=60°,SB=$2\sqrt{3}$;
∴在RT△SBO中,OB=$SB•cos60°=\sqrt{3}$,SO=SB•sin60°=3;
∴$BD=OB•cos30°=\frac{3}{2}$,BC=3;
∴${S}_{△ABC}=\frac{1}{2}•3•3•sin60°=\frac{9\sqrt{3}}{4}$;
∴${V}_{三棱锥S-ABC}=\frac{1}{3}{S}_{△ABC}•SO$=$\frac{1}{3}×\frac{9\sqrt{3}}{4}×3=\frac{9\sqrt{3}}{4}$.
故选:C.

点评 考查正三棱锥的定义,正三角形中心的概念,以及直线和平面所成角的概念并能找到直线和平面所成角,直角三角形边角的关系,以及三角形面积公式,三棱锥的体积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,平面PAD⊥底面ABCD,PA⊥PD,PA=PD,BC∥AD,AB⊥AD,AD=2AB=2BC=2.
(1)直线PB与CD所成角的余弦值;
(2)求直线CD和平面PAB所成的角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设φ(x)=sin2[(2n+$\frac{1}{2}$)π-x]+cos2(x-$\frac{3}{2}$π)+cos2(π-x)(n∈Z),求φ($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是各项均为正数的等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{bn}的前n项和为Sn,满足2Sn+bn=1
(1)求数列{an}、{bn}的通项公式;
(2)如果cn=anbn,设数列{cn}的前n项和为Tn,求证:Tn<Sn+$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$(ω>0)的图象在y轴右侧的第一个最高点的横坐标为$\frac{π}{12}$.
(1)求ω的值;
(2)若A∈(0,π),且f(A)=$\frac{\sqrt{3}}{2}$,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设p、q为两个简单命题,若“p∧q”为真命题,则“¬p”为假命题(填“真”或“假”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.$f(x)=\left\{\begin{array}{l}{(3-a)x+1\\;x<1}\\{{a}^{x}\\;x≥1}\end{array}\right.$,满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,那么a的取值范围是(  )
A.(1,3)B.(1,2]C.[2,3)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x0-$\sqrt{1-2x}$的定义域是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]C.(-∞,0)∪(0,$\frac{1}{2}$]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人)
高校相关人数抽取人数
A151
B30x
C60y
(Ⅰ)求x,y;
(Ⅱ)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.

查看答案和解析>>

同步练习册答案