【题目】设数列{an}的前n项和为Sn , 已知a1=1, ,n∈N* .
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有 .
科目:高中数学 来源: 题型:
【题目】某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.
(Ⅰ)估计所抽取的数学成绩的众数;
(Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,下列说法正确的是( )
A.函数f(x)的图象关于直线x=﹣ 对称
B.函数f(x)的图象关于点(﹣ ,0)对称
C.若方程f(x)=m在[﹣ ,0]上有两个不相等的实数根,则实数m∈(﹣2,﹣ ]
D.将函数f(x)的图象向左平移 个单位可得到一个偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 1=a1≤a2≤…≤a7 , 其中a1 , a3 , a5 , a7 成公比为q的等比数列,a2 , a4 , a6成公差为1的等差数列,则q的最小值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称. (I)求m的值;
(Ⅱ)直线l与圆C交于A,B两点, =﹣3(O为坐标原点),求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知R(x0 , y0)是椭圆 + =1上的一点,从原点O向圆R(x﹣x0)2+(y﹣y0)2=12作两条切线,分别交椭圆于P,Q两点.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,分别记为k1 , k2 , 求k1k2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过双曲线 ﹣ =1(a>0,b>0)的右焦点F作该双曲线一条渐近线的垂线与两条渐近线相交于M,N两点,若|MN|= ,则该双曲线的离心率是( )
A.2或
B. 或
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.
(1)当切线PA的长度为 时,求点P的坐标;
(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段AB长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2. (Ⅰ)证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com