精英家教网 > 高中数学 > 题目详情
在锐角三角形ABC中,已知|
AB
|=4,|
AC
|=1,△ABC
的面积为
3
,则
AB
AC
的值为
2
2
分析:由题设知:△ABC的面积S=
1
2
(|
AB
|•|
AC
|×sinA)=2sinA=
3
,所以sinA=
3
2
,由此能求出
AB
AC
的值.
解答:解:△ABC的面积S=
1
2
(|
AB
|•|
AC
|×sinA)=2sinA=
3

∴sinA=
3
2

锐角△ABC中,∠A为锐角,
∴∠A=60°,
AB
AC
=|
AB
|•|
AC
|•cosA=4×1×
1
2
=2.
故答案为:2.
点评:本题考查两个向量的数量积的应用,解题时要认真审题,仔细解答,注意向量在几何中的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,且a=2bsinA.
(1)求∠B的大小;
(2)若a=3
3
,c=5
,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足
3
a-2bsinA=0

(Ⅰ)求角B的大小;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A、B、C的对边,
p
=(a+c,b),
q
=(c-a,b-c)且
p
q

(1)求A的大小;
(2)记f(B)=2sin2B+sin(2B+
π
6
)
,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南充一模)在锐角三角形ABC中,角A,B,C对边a,b,c且a2+b2-
2
ab=c2,tanA-tanB=csc2A
①求证:2A-B=
π
2

②求三角形ABC三个角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:在锐角三角形ABC中,?A,B,使sinA<cosB;命题q:?x∈R,都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题;           
②命题“¬p∨q”是真命题;
③命题“¬p∨¬q”是假命题;       
④命题“p∧¬q”是假命题;
其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案