精英家教网 > 高中数学 > 题目详情

【题目】给出下列4个命题:

①若函数上有零点,则一定有

②函数既不是奇函数又不是偶函数;

③若函数的值域为,则实数的取值范围是

④若函数满足条件,则的最小值为.

其中正确命题的序号是:_______.(写出所有正确命题的序号)

【答案】

【解析】

举出特例,如,即可判断①为假;根据定义域先将原函数化简,再根据奇偶性的定义,即可判断②为假;根据函数的值域为,可得二次函数轴必有交点,且开口向上,进而可判断③为假;用解方程组法,先求出的解析式,即可求出的最小值,判断出④为真.

①若,则上有零点,此时,即,所以①错;

②由,所以,又

所以函数是偶函数,故②错;

③若函数的值域为

时,显然成立.

时,则二次函数轴必有交点,且开口向上,

解得

所以实数的取值范围是.故③错;

④因为,所以有,联立消去

可得),

所以

时,

时,

所以,即最小值为.故④正确.

故答案为④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着国内电商的不断发展,快递业也进入了高速发展时期,按照国务院的发展战略布局,以及国家邮政管理总局对快递业的宏观调控,SF快递收取快递费的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,在收费10元的基础上,每超过1kg(不足1kg,按1kg计算)需再收5.某县SF分代办点将最近承揽的100件包裹的重量统计如下:

重量(单位:kg

01]

12]

23]

34]

45]

件数

43

30

15

8

4

对近60天,每天揽件数量统计如下表:

件数范围

0~100

101~200

201~300

301~400

401~500

件数

50

150

250

350

450

天数

6

6

30

1

6

以上数据已做近似处理,将频率视为概率.

1)计算该代办未来5天内不少于2天揽件数在101~300之间的概率;

2)①估计该代办点对每件包裹收取的快递费的平均值;

②根据以往的经验,该代办点将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前该代办点前台有工作人员3人,每人每天揽件不超过150件,日工资110.代办点正在考虑是否将前台工作人员裁减1人,试计算裁员前后代办点每日利润的数学期望,若你是决策者,是否裁减工作人员1人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列n项和为,且其中m为实常数, .

1)求证:是等比数列;

2)若数列的公比满足,求证:数列 是等差数列,并求的通项公式;

3)若时,设,求数列的前n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1左右焦点为F1F2直线(1xy0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m1).

1)求椭圆C的方程;

2)设P为椭圆C上任一点,过焦点F1F2的弦分别为PMPN,设λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是( )

A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.

(1)求图中的值;

(2)估计该校担任班主任的教师月平均通话时长的中位数;

(3)在这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )

A. B. π C. 2 D.

查看答案和解析>>

同步练习册答案