精英家教网 > 高中数学 > 题目详情
已知f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),若x∈[0,1],t∈[4,6)时,F(x)=g(x)-f(x)有最小值4,则a的值是
 
考点:对数函数的图像与性质
专题:函数的性质及应用
分析:把f(x)和g(x)代入到F(x),然后利用对数的运算性质化简,转化为关于a的不等式,再运用基本不等式即可.
解答: 解:∵f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),x∈[0,1),t∈[4,6)时,F(x)=g(x)-f(x)有最小值是4,
∴F(x)=g(x)-f(x)=
log
(2x+t)2
x+1
a
,x∈[0,1),t∈[4,6),
∵a>1,
∴令h(x)=
(2x+t)2
x+1
=
[2(x+1)+(t-2)]2
x+1
=4(x+1)+4(t-2)+
(t-2)2
x+1

∵0≤x<1,4≤t<6,
∴h(x)=4(x+1)+
(t-2)2
x+1
+4(t-2)在[0,1)上单调递增,
∴h(x)min=h(0)=4+(t-2)2+4(t-2)=[(t-2)+2]2=t2
∴F(x)min=logat2=4,
∴a4=t2
∵4≤t<6,
∴a4=16,
∴a=2.
故答案为:2.
点评:此题考查对数的运算性质,要求学生灵活运用对数运算的性质,熟练运用化归思想解决恒成立问题,易错点转化为a4≤在于h(x)=4(x+1)+
(t-2)2
x+1
+4(t-2),该先把最小值解出,再令它等于4,转化为在t∈[4,6)上有解,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的终边过点(-1,
3
),则tanα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,
①GH与EF平行;
②BD与MN为异面直线;
③GH与MN成60°角;
④DE=2MN.
以上四个命题中,正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-
1
3
ax3(a>0),函数g(x)=f(x)+ex(x-1),函数g(x)的导函数为g′(x).
(1)求函数f(x)的极值;
(2)若a=e(e为自然对数的底数)
(i)求函数g(x)的单调区间;
(ii)试判断x>0时,不等式g′(x)≥1+lnx是否恒成立,若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线tx-y-t+1=0与圆x2+y2=4交于P、Q两点,求PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设O是坐标原点,定点A(1,0),M是直线l:x=2上的点,过点A作OM的垂线,垂足为R,且所作的垂线与以OM为直径的圆C交于P、Q两点.
(1)若PQ=
6
,求圆C的方程;
(2)若M是直线l上的动点,求证:点P在定圆上,并求该定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知“k∈(m,+∞)”是“
x2
2
+
y2
8
xy
2k
”的充分不必要条件,则实数的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如下算法中,输出i的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=-loga(1-x).
(1)当0<a<1时,解不等式:f(x)+g(x)≥0;
(2)当a>1,x∈[0,1)时,总有2f(x)+g(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案