精英家教网 > 高中数学 > 题目详情

切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.

(Ⅰ)证明://;
(Ⅱ)求证:.

(Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)证明://,只需证明,而,即证,只需证△∽△,即可,由已知切线与圆切于点,圆内有一点满足,的平分线交圆于,,由切割线定理知,从而得,故△∽△,从而得证;(Ⅱ)连接 ,求证:,注意到△,可得,只需证,即证,即证△,这容易证出.
试题解析:(Ⅰ)证明:∵切圆于,∴,又∵,∴,∴△∽△,∴,又∵,∴,∴//

(Ⅱ)证明:连接 ,由,知△,同理有△,∴,故,又,∴ .
考点:割线定理、相似三角形、等角对等弦.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,AB为⊙O的直径,AE平分∠BAC交⊙O于E点,过E作⊙O的切线交AC于点D,试判断△AED的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,内接于上,于点E,点F在DA的延长线上,,求证:

(1)的切线;
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知与⊙相切,为切点,为割线,弦相交于点,上一点,且.

(1)求证:
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四边形ABCD内接于,且AB是的直径,过点D的的切线与BA的延长线交于点M.

(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,的角平分线,的外接圆交.

(1)求证:
(2)当时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,为圆上一点,,垂足为,点为圆上任一点,交于点于点

求证:(1);(2)

查看答案和解析>>

同步练习册答案