精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3ax2+bx.
(1)若a=2b,试问函数f(x)能否在x=-1处取到极值?若有可能,求出实数a,b的值;否则说明理由.
(2)若函数f(x)在区间(-1,2),(2,3)内各有一个极值点,试求w=a-4b的取值范围.

(1) 不能,理由见解析      (2)  (-29,10)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求过曲线y=ex上的点P(1,e)且与曲线在该点处的切线垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=-x3+x2+2ax.
(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的单调区间,并证明对[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)将y=f(x)的图像向下平移a(a>0)个单位,同时将y=g(x)的图像向上平移b(b>0)个单位,使它们恰有四个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(2)如果对于任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象与轴异于原点的交点M处的切线为轴的交点N处的切线为, 并且平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,并且使得不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex-ln(xm).
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数存在极大值和极小值,求的取值范围;
(2)设分别为的极大值和极小值,其中的取值范围.

查看答案和解析>>

同步练习册答案