精英家教网 > 高中数学 > 题目详情
(2012•江苏二模)如图,已知椭圆C:
x2
4
+y2=1
,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若
OP
=m
OA
+n
OB
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.
分析:(1)设P的坐标,通过
OP
=m
OA
+n
OB
,推出m,n与P的坐标的关系,推出定圆的方程.
(2)设M(x1,y1),N(x2,y2),利用直线OM、ON的斜率之积等于直线OA、OB的斜率之积,得到x1,x2的关系.求出MN的距离以及O到直线MN的距离,然后证明△OMN的面积是否为定值.
解答:解:(1)易求A(2,1),B(-2,1).…(2分)
设P(x0,y0),则
x02
4
+y02=1
.由
OP
=m
OA
+n
OB
,得
x0=2(m-n)
y0=m+n

所以
4(m-n)2
4
+(m+n)2=1
,即.故点Q(m,n)在定圆x2+y2=
1
2
上.…(8分)
(2)设M(x1,y1),N(x2,y2),则
y1y2
x1x2
=-
1
4

平方得x12x22=16y12y22=(4-x12)(4-x22),即x12+x22=4.…(10分)
因为直线MN的方程为(x2-x1)y-(y2-y1)x+x1y2-x2y1=0,
所以O到直线MN的距离为d=
|x1y2-x2y1|
(x2-x1)2+(y2-y1)2
,…(12分)
所以△OMN的面积S=
1
2
MN•l=
1
2
|x1y2-x2y1|=
1
2
x12y22
+x
2
2
y
2
1
-2x1x2y 1y2

=
1
2
x12(1-
x22
4
)+x22(1-
x12
4
)+
1
2
x12x22
=
1
2
x12+x22
=1

故△OMN的面积为定值1.…(16分)
点评:本题考查圆的方程的求法,点到直线的距离公式,弦长公式的应用,考查转化思想计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏二模)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
(1)若α∥β,m?β,n?α,则m∥n;
(2)若α∥β,m⊥β,n∥α,则m⊥n;
(3)若α⊥β,m⊥α,n∥β,则m∥n;
(4)若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,已知A、B是函数y=3sin(2x+θ)的图象与x轴两相邻交点,C是图象上A,B之间的最低点,则
AB
AC
=
π2
8
π2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,在C城周边已有两条公路l1,l2在点O处交汇,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城,已知OC=(
2
+
6
)km
,∠AOB=75°,∠AOC=45°,设OA=xkm,OB=ykm.
(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点A、B的位置,使△OAB的面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)设实数n≤6,若不等式2xm+(2-x)n-8≥0对任意x∈[-4,2]都成立,则
m4-n4
m3n
的最小值为
-
80
3
-
80
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)已知双曲线
x2
m
-
y2
3
=1(m>0)
的一条渐近线方程为y=
3
2
x
,则m的值为
4
4

查看答案和解析>>

同步练习册答案