精英家教网 > 高中数学 > 题目详情
9.函数y=$\frac{3x-4}{x+2}$的单调递增区间是(-∞,-2),(-2,+∞).

分析 可将原函数变成y=3-$\frac{10}{x+2}$,从而根据单调性的定义即知该函数在(-∞,-2),(-2,+∞)上单调递增,这样便得出了该函数的单调递增区间.

解答 解:y=$\frac{3x-4}{x+2}=\frac{3(x+2)-10}{x+2}$=$3-\frac{10}{x+2}$;
∴该函数的单调递增区间为:(-∞,-2),(-2,+∞).
故答案为:(-∞,-2),(-2,+∞).

点评 考查函数单调性的定义,分离常数法的运用,注意本题的两个区间不能并起来.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤-2}\\{\stackrel{{x}^{2}+2x,-2<x<2}{2x-1,x≥2}}\end{array}\right.$
(1)求f(-5),f(-$\sqrt{3}$),f[f(-$\frac{5}{2}$)]的值;
(2)若f(a)=3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在以v千米/小时的速度向东航行的科学探测船上释放了一个探测热气球,气球顺风与船同向,以2千米/小时的速度沿与水平方向成60°直线方向向上飘去,2小时后测得探测船与气球的距离为2$\sqrt{7}$千米,之后热气球沿水平方向仍以2千米/小时的速度飞行1小时,第二次测得探测船与热气球的距离为s千米.如图.
(1)求探测船的速度v(千米/小时);
(2)求第二次测距离时,从探测船位置观察热气球时,仰角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤5}\\{f(x-2),x>5}\end{array}\right.$(a>0,且a≠1),f(8)=16,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若曲线y=$\frac{1}{2}$sinx与y=tanx在x=α(0<α<π且α≠$\frac{π}{2}$)处的切线互相垂直,则α=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.要使函数f(x)=1+x+a•x2在(0,2]上有f(x)>0恒成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.当x∈[-5,5]时,函数f(x)=|x5-5x|的最大值为3100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=4x2-4mx+m2-2m+2(m∈R)在区间[0,2]上的最小值是5,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=$\frac{3x-2}{x+1}$,x∈[0,2]的最值.

查看答案和解析>>

同步练习册答案