精英家教网 > 高中数学 > 题目详情

22、(本题满分14分)

定义F(x,y)=yx(x>0,y>0).

(1)设函数f(n)=(n∈N*) , 求函数f(n)的最小值;

(2)设g(x)=F(x,2),正项数列{an}满足;a1=3,g(an+1)=,求数列{an}的通项公式,并求所有可能乘积aiaj(1≤ijn)的和.

 

【答案】

解:(1)f(n)= ,  =…= , 由2n2-(n+1)2=(n-1)2-2,

当n≥3时,f(n+1)>f(n); 当n<3时,f(n+1)<f(n),

所以当n=3时,f(n)min=f(3)=;………………6分

(2) g(x)=2x,所以g(an+1)=,又g(an+1)==,

所以an+1=3an,而a1=3,所以an=3n;……………………………9分

 

设所求的和为S,

则S=a1•a1+  (a1+a2)•a2+…+(a1+a2+…+an)•an…………………11分

 =3•31+(3+32)•32+…+(3+32+…+3n) •3n ………………………12分

       =•31+•32+…+•3n

    =

    =

    =………………………14分.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案