精英家教网 > 高中数学 > 题目详情

【题目】已知为抛物线的焦点为其上一点关于轴对称直线与抛物线交于异于两点.

(1)求抛物线的标准方程和点的坐标

(2)判断是否存在这样的直线使得的面积最小.若存在求出直线的方程和面积的最小值若不存在请说明理由.

【答案】(1);(2)最小值,此时直线的方程为

【解析】试题分析:(1)由题意知得出抛物线的方程,由得出,根据,得,由此能求出点坐标;(2)由题意知直线的斜率不为,设直线的方程为,联立方程组,设两个交点,由,由此能求出当有最小值,此时直线方程为.

试题解析:(1)由题意知,故抛物线方程为

(2)由题意知直线的斜率不为0,则可设直线的方程为

联立方程组

设两个交点整理得此时,恒成立.故直线的方程可设为从而直线过定点.

的面积

时有最小值此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了名男生、名女生进行为期一周的跟踪调查,调查结果如表所示:

平均每天使用手机超过小时

平均每天使用手机不超过小时

合计

男生

女生

合计

(1)能否在犯错误的概率不超过的前提下认为学生使用手机的时间长短与性别有关?

(2)在这名女生中,调查小组发现共有人使用国产手机,在这人中,平均每天使用手机不超过小时的共有人.从平均每天使用手机超过小时的女生中任意选取人,求这人中使用非国产手机的人数的分布列和数学期望.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线交抛物线位于第一象限)两点.

(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;

(2)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,常数

1)求函数在区间上的零点个数;

2)函数的导数,是否存在无数个,使得为函数的极大值点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求函数的零点个数;

(2)证明:当,函数有最小值,设的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

(1)求椭圆的标准方程;

(2)过点的直线交椭圆于两点,轴上的点,若是以为斜边的等腰直角三角形, 求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年8月20日起,市交警支队全面启动路口秩序环境综合治理,重点整治机动车不礼让斑马线和行人的行为,经过一段时间的治理,从市交警队数据库中调取了20个路口近三个月的车辆违章数据,经统计得如图所示的频率分布直方图,统计数据中凡违章车次超过30次的设为“重点关注路口”.

(1)现从“重点关注路口”中随机抽取两个路口安排交警去执勤,求抽出来的路口的违章车次一个在,一个在中的概率;

(2)现从支队派遣5位交警,每人选择一个路口执勤,每个路口至多1人,违章车次在的路口必须有交警去,违章车次在的不需要交警过去,设去“重点关注路口”的交警人数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案