分析 由题意可得等比数列{an}的公比,可求S3n,可判数列{an3}是1为首项q3为公比的等比数列,可得Tn,代入已知可解q值.
解答 解:∵等比数列{an}中a1=1,an=qn-1.
则an3=(qn-1)3=(q3)n-1,
即数列{an3}是1为首项q3为公比的等比数列,
∴S3n=$\frac{{a}_{1}(1-{q}^{3n})}{1-{q}^{3}}$=$\frac{1-{q}^{3n}}{1-{q}^{3}}$,
Tn=$\frac{{a}_{1}(1-{q}^{3n})}{1-q}$=$\frac{1-{q}^{3n}}{1-q}$,
由S3n=7Tn可得$\frac{1-{q}^{3n}}{1-{q}^{3}}$=7×$\frac{1-{q}^{3n}}{1-q}$,
即1-q3=7(1-q),
即1+q+q2=7,
则q2+q-6=0.
解得q=2或q=-3,
故答案为:-3或2
点评 本题考查等比数列的求和公式,考查学生的运算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\vec a$=$\vec b$ | B. | $\vec a•\vec b=0$ | C. | $\vec a•\vec b=1$ | D. | $\vec a•\vec a=\vec b•\vec b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com