精英家教网 > 高中数学 > 题目详情

【题目】小图给出了某池塘中的浮萍蔓延的面积与时间(月)的关系的散点图.有以下叙述:

①与函数相比,函数作为近似刻画的函数关系的模型更好;

②按图中数据显现出的趋势,第个月时,浮萍的面积就会超过

③按图中数据显现出的趋势,浮萍每个月增加的面积约是上个月增加面积的两倍;

④按图中数据显现出的趋势,浮萍从月的蔓延到至少需要经过个月.

其中正确的说法有__________(填序号).

【答案】①②③.

【解析】

结合图形求出函数的表达式,然后逐一判断

①由题意知:浮萍蔓延的面积()与时间(月)的关系:),且由函数图象可知函数过点

∴这个指数函数的底数是,正确,故①正确.

∴函数解析式为

②当时,,故第个月时,浮萍的面积就是超过成立,故②正确.

③由知,浮萍每个月增加的面积约是上个月增加面积的两位,③正确.

④由知,,即需要经过个月,故④不正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (a>0).
(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上的动点,点QNP上,点GMP上,且满足.

I)求点G的轨迹C的方程

II)过点(20)作直线,与曲线C交于AB两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)lnx+ +2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂每日生产一种产品吨,每日生产的产品当日销售完毕,日销售额为万元,产品价格随着产量变化而有所变化,经过一段时间的产销,得到了的一组统计数据如下表:

(1)请判断中,哪个模型更适合刻画之间的关系?可从函数增长趋势方面给出简单的理由;

(2)根据你的判断及下面的数据和公式,求出关于的回归方程,并估计当日产量时,日销售额是多少?(结果保留整数)

参考公式及数据:线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=kcn﹣k(其中c,k为常数),且a2=4,a6=8a3
(1)求an
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且(n∈N*)

(1)求的通项公式;

(2)数列满足,求数列的前n项和

(3)若对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
已知直线l过点P(﹣1,2),且倾斜角为 ,圆方程为
(1)求直线l的参数方程;
(2)设直线l与圆交与M、N两点,求|PM||PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底 的中点。

1)证明:直线平面

2)点在棱上,且直线与底面所成角为,求二面角的余弦值。

查看答案和解析>>

同步练习册答案