精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a1=1,a2=2,且点(Sn,Sn+1)在直线y=kx+1上
(Ⅰ)求k的值;
(Ⅱ)求证:{an}是等比数列;
(Ⅲ)记Tn为数列{Sn}的前n项和,求T10的值.
分析:(1)根据点(Sn,Sn+1)在直线y=kx+1上,所以点的坐标满足直线的方程,有所给的前两项的值算出点的坐标,代入求解.
(2)由数列的前n项和求通项的问题,考虑的思路一般是,仿写相减,变前n项和的关系为an之间的关系,发现数列是等比数列.
(3)由等比数列前n项和公式,写出sn,题目把它当做通项,求它的前十项的和,用等比数列求和公式即可.
解答:解:(1)Sn+1=k•Sn+1,令n=1有,S2=k•S1+1,∴a1+a2=k•a1+1.代入a1=1,a2=2有k=2.
(2)∵Sn+1=2Sn+1,∴Sn=2Sn-1+1(n≥2).
两式相减有,an+1=2an,即,
an+1
an
=2.且
a2
a1
=2符合.
∴{an}为公比为2的等比数列.
(3)Sn=
1-2n
1-2
=2n-1

T10=(2+22+23++210)-10=
2(1-210)
1-2
-10=2036.
点评:理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.同时也要理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案