精英家教网 > 高中数学 > 题目详情

【题目】关于函数有如下四个结论:

是偶函数;②在区间上单调递增;③最大值为;④上有四个零点,其中正确命题的序号是_______

【答案】①③

【解析】

利用奇偶性的定义判定函数的奇偶性,可判断出命题①的正误;在时,去绝对值,化简函数的解析式,可判断函数在区间上的单调性,可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析式,求出该函数的零点,即可判断命题④的正误.

对于命题①,函数的定义域为,关于原点对称,

,该函数为偶函数,命题①正确;

对于命题②,当时,,则,则函数上单调递减,命题②错误;

对于命题③,,又,所以,函数的最大值为,命题③正确;

对于命题④,当时,

由于该函数为偶函数,当时,

,所以,该函数在区间上有且只有三个零点.

因此,正确命题的序号为①③.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定两个命题,P:对任意实数x都有ax2+ax+10恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果“P∧Q”为假,且“P∨Q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当,求函数的图象在点处的切线方程;

(Ⅱ)当时,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2sinx,-1),,函数fx)=

(1)求函数fx)的对称中心;

(2)设ABC的内角ABC所对的边为abc,且a2=bc,求fA)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图组合体中,三棱柱的侧面是圆柱的轴截面(过圆柱的轴,截圆柱所得的截面),是圆柱底面圆周上不与重合的一个点.

(1)求证:无论点如何运动,平面平面

(2)当点是弧的中点时,求四棱锥与圆柱的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】50名学生调查对AB两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对AB都不赞成的学生数比对AB都赞成的学生数的三分之一多1. 问对AB都赞成的学生有____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的值;

(2)设为整数,且对于任意正整数 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰直角中,分别为的中点,,将沿折起,使得二面角.

(1)作出平面和平面的交线,并说明理由;

(2)二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是自然对数的底数)

(1)求证:

(2)若不等式上恒成立,求正数的取值范围.

查看答案和解析>>

同步练习册答案