精英家教网 > 高中数学 > 题目详情

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm容器Ⅱ的两底面对角线的长分别为14cm62cm.分别在容器Ⅰ和容器Ⅱ中注入水水深均为12cm现有一根玻璃棒l其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将放在容器Ⅰ中的一端置于点A处另一端置于侧棱上,没入水中部分的长度;

(2)将放在容器Ⅱ中的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.

答案(1)16(2)20.

思路分析(1)转化为直角三角形ACM中,利用相似性质求解AP1(2)转化到三角形EGN中,先利用直角梯形性质求角,再利用正弦定理求角,最后根据直角三角形求高,即为没入水中部分的长度.

【解析】(1)由正棱柱的定义,平面,所以平面平面

记玻璃棒的另一端落在上点处.

因为,所以,从而

如图,与水面的点为,过作P1Q1AC,Q1为垂足,

则P1Q1平面ABCD,故P1Q1=12,从而AP1=

答:玻璃棒l没入水中部分的长度为16cm.(5分)

(如果将没入水中部分理解为水面以上部分,则结果为24cm)

(2)如图,O,O1是正棱台的两底面中心.

由正棱台的定义,OO1平面EFGH,所以平面E1EGG1平面EFGH,O1OEG.

同理,平面E1EGG1平面E1F1G1H1,O1OE1G1

记玻璃棒的另一端落在GG1上点N处.

过G作GKE1G1,K为垂足,则GK =OO1=32.

因为EG = 14,E1G1= 62,

所以KG1=,从而

因为,所以

中,由正弦定理可得,解得

因为,所以

于是

记EN与水面的交点为P2,过P2作P2Q2EG,Q2为垂足,则P2Q2平面EFGH,

故P2Q2=12,从而EP2=

答:玻璃棒l没入水中部分的长度为20cm.(10分)

(如果将没入水中部分理解为水面以上部分,则结果为20cm)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,椭圆的离心率为e1 , 双曲线的离心率为e2 , 若|PF2|=|F1F2|,则 + 的最小值为(
A.6+2
B.8
C.6+2
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数f(x)满足f(1﹣x)=f(1+x),且在x∈[0,1]时,f(x)= ,若直线kx﹣y+k=0(k>0)与函数f(x)的图象有且仅有三个交点,则k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间上单调递减的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角A,B,C所对的边分别是a,b,c,且.

(1)证明:

(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】累计净化量(CCM)是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为时对颗粒物的累计净化量(单位:克).根据国家标准,对空气净化器的累计净化量(CCM)有如下等级划分:

净化量(克)

12以上

等级

已知某批空气净化器共台,其累计净化量都分布在区间内,为了解其质量,随机抽取了台净化器作为样本进行估计,按照均匀分组,其中累净化量在的所有数据有:,并绘制了如下频率分布直方图

1)求的值及频率分布直方图中的值;

2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为的空气净化器有多少台?

3)从累计净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数y=( x﹣( x+1,x∈[﹣3,2]的单调区间,并求它的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,四边形为平行四边形, ,且 .

(1)求证:平面平面

(2)若,直线与平面夹角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案