精英家教网 > 高中数学 > 题目详情
5.关于x的不等式ax2+bx+c>0的解集为(-2,3),则关于x的不等式ax2-bx+c>0的解集为(-3,2).

分析 由关于x的不等式ax2+bx+c>0的解集为(-2,3),求出a<0,b=-a,c=-6a,由此能求出关于x的不等式ax2-bx+c>0的解集.

解答 解:∵关于x的不等式ax2+bx+c>0的解集为(-2,3),
∴a<0,且-2,3是方程ax2+bx+c=0的两个根,
∴$\left\{\begin{array}{l}{-\frac{b}{a}=1}\\{\frac{c}{a}=-6}\end{array}\right.$,解得b=-a,c=-6a,
∵ax2-bx+c>0,∴ax2+ax-6a>0,
∴x2+x-6<0,
解方程x2+x-6=0,得x1=-3,x2=2,
∴关于x的不等式ax2-bx+c>0的解集为(-3,2).
故答案为:(-3,2).

点评 本题考查不等式的解集的求法,是基础题,解题时要认真审题,注意一元二次不等式的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.空间四边形OABC各边以及AC、BO的长都是1,点D、E分别是边OA,BC的中点,连接DE.
(1)求直线AC与OB所成角;
(2)计算DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在区间(0,1)上是增函数的是(  )
A.y=-x+1B.y=$\sqrt{x}$C.y=x2-4x+5D.y=$\frac{2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义域为R的奇函数满足f(x+4)=f(x),且x∈(0,2)时,f(x)=ln(x2+a),a>0,若函数f(x)在区间[-4,4]上有9个零点,则实数a的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义域为R的奇函数满足f(x+4)=f(x)+f(2),且x∈(0,2)时,f(x)=lnx,则函数f(x)在区间[-4,4]上有9个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-2ax+b(a>0)在区间[-1,4]上有最大值10和最小值1.设g(x)=$\frac{f(x)}{x}$.
(1)求a、b的值;
(2)证明:函数g(x)在[$\sqrt{b}$,+∞)上是增函数;
(3)若不等式g(2x)-k•2x≥0在x∈[-1,1]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2sin(2x+$\frac{π}{6}$)+1+a,x∈[0,$\frac{3π}{4}$]
(1)求单调递增区间;
(2)若方程f(x)=0在[0,$\frac{3π}{4}$]上有两个不同的实根.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在各项均为正数的数列{an}中,若a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$(n∈N+).
(1)试判断数列{an}的单调性,并证明对任意的n∈N+,恒有an<1;
(2)求证:对一切n∈N+,有an>$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若方程x2+y2-x+2y+m=0表示一个圆,则m的取值范围为(-∞,$\frac{5}{4}$);此时,它的圆心坐标为($\frac{1}{2}$,-1);若m=1,则半径为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案