【题目】如图,在四棱锥中,底面是矩形,平面,,点、分别在线段、上,且,其中,连接,延长与的延长线交于点,连接.
(Ⅰ)求证:平面;
(Ⅱ)若时,求二面角的正弦值;
(Ⅲ)若直线与平面所成角的正弦值为时,求值.
【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)在线段上取一点,使得,,证明四边形为平行四边形,得到,然后证明平面.
(Ⅱ)以为坐标原点,分别以,,为,,轴建立空间直角坐标系,求出平面的一个法向量,平面的一个法向量利用空间向量的数量积,求解二面角的正弦值.
(Ⅲ)令,,,,,求出平面的一个法向量利用空间向量的数量积转化求解即可.
(Ⅰ)在线段上取一点,使得,,
且,
,
,且,
且,
四边形为平行四边形,
,
又平面,平面,
平面.
(Ⅱ)以为坐标原点,分别以,,为,,轴建立空间直角坐标系,0,,,0,,,2,,,2,,,0,,
,,1,,,0,
设平面的一个法向量为,
,,
,令,,,
设平面的一个法向量为,
,,
,
令,,,,
,
,
二面角的正弦值为.
(Ⅲ)令,,,,,
设平面的一个法向量为,
,,
,令,
,
由题意可得:,
,
,.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,点为左焦点,过点作轴的垂线交椭圆于、两点,且.
(1)求椭圆的方程;
(2)在圆上是否存在一点,使得在点处的切线与椭圆相交于、两点满足?若存在,求的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.
(1)求曲线的轨迹方程;
(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;
(3)若, 是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市随机抽取一年(365天)内100天的空气质量指数的监测数据,结果统计如下:
记某企业每天由空气污染造成的经济损失(单位:元),空气质量指数为.当时,企业没有造成经济损失;当对企业造成经济损失成直线模型(当时造成的经济损失为,当时,造成的经济损失;当时造成的经济损失为2000元;
(1)试写出的表达式:
(2)在本年内随机抽取一天,试估计该天经济损失超过350元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有12天为重度污染,完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四名工人一天中生产零件的情况如图所示,每个点的横、纵坐标分别表示该工人一天中生产
的Ⅰ型、Ⅱ型零件数,有下列说法:
四个工人中,的日生产零件总数最大
②日生产零件总数之和小于日生产零件总数之和
③日生产Ⅰ型零件总数之和小于Ⅱ型零件总数之和
④日生产Ⅰ型零件总数之和小于Ⅱ型零件总数之和
则正确的说法有__________(写出所有正确说法的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若关于的不等式在上恒成立,求的取值范围;
(Ⅱ)设函数,在(Ⅰ)的条件下,试判断在上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com