【题目】已知圆O:与直线相切.
(1)求圆O的方程;
(2)若过点的直线l被圆O所截得的弦长为4,求直线l的方程;
(3)若过点作两条斜率分别为,的直线交圆O于B、C两点,且,求证:直线BC恒过定点.并求出该定点的坐标.
【答案】(1);(2)或;(3)证明详见解析,该点坐标为.
【解析】
(1)利用圆心到直线的距离等于半径即可求出.
(2)根据题意可得圆心到直线的距离,分类讨论,当斜率不存在时,,满足题意;当直线的斜率存在,利用点斜式求出直线方程,再利用点到直线的距离公式即可求解.
(3)设直线AB:,直线: ,分别与圆的方程联立,求出点、,进而求出直线BC方程,根据直线方程即可求解.
解:(1)圆O:与直线相切,
圆心到直线的距离等于半径,即,
,
圆O的方程为;
(2)直线l被圆O所截得的弦长为4,
圆心到直线的距离,
斜率不存在时,,满足题意;
斜率存在时,设方程为,
即,
圆心到直线的距离,,
直线l的方程为,
综上所述,直线l的方程为或;
(3)由题意知,设直线AB:,
与圆方程联立,消去y得:,
,,即,
设直线: ,
与圆的方程联立,消去y得:,
,,
,用代替得:,
直线BC方程为,
令,可得,则直线BC定点
科目:高中数学 来源: 题型:
【题目】给出以下四个说法:
①残差点分布的带状区域的宽度越窄相关指数越小
②在刻画回归模型的拟合效果时,相关指数的值越大,说明拟合的效果越好;
③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;
④对分类变量与,若它们的随机变量的观测值越小,则判断“与有关系”的把握程度越大.
其中正确的说法是
A. ①④B. ②④C. ①③D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】狄利克雷是德国著名数学家,函数,被称为狄利克雷函数,下面给出关于狄利克雷函数的五个结论:
①若是无理数,则;
②函数的值域是;
③函数是偶函数;
④若且为有理数,则对任意的恒成立;
⑤存在不同的三个点,使得为等边三角形.
其中正确结论的序号是___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,,数列满足,,且.
(1)求数列的通项公式;
(2)求证:数列是等差数列,求数列的通项公式;
(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点.将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥PDCE的外接球的体积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,抛物线的准线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)如图,点分别是椭圆的左顶点、左焦点直线与椭圆交于不同的两点(都在轴上方).且.证明:直线过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com