精英家教网 > 高中数学 > 题目详情

【题目】已知圆O与直线相切.

1)求圆O的方程;

2)若过点的直线l被圆O所截得的弦长为4,求直线l的方程;

3)若过点作两条斜率分别为的直线交圆OBC两点,且,求证:直线BC恒过定点.并求出该定点的坐标.

【答案】1;(2;(3)证明详见解析,该点坐标为

【解析】

1)利用圆心到直线的距离等于半径即可求出.

2)根据题意可得圆心到直线的距离,分类讨论,当斜率不存在时,,满足题意;当直线的斜率存在,利用点斜式求出直线方程,再利用点到直线的距离公式即可求解.

3)设直线AB,直线 ,分别与圆的方程联立,求出点,进而求出直线BC方程,根据直线方程即可求解.

解:(1)O与直线相切,

圆心到直线的距离等于半径,即

O的方程为

2直线l被圆O所截得的弦长为4

圆心到直线的距离

斜率不存在时,,满足题意;

斜率存在时,设方程为

圆心到直线的距离

直线l的方程为

综上所述,直线l的方程为

3)由题意知,设直线AB

与圆方程联立,消去y得:

,即

设直线

与圆的方程联立,消去y得:

,用代替得:

直线BC方程为

,可得,则直线BC定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出以下四个说法:

①残差点分布的带状区域的宽度越窄相关指数越小

②在刻画回归模型的拟合效果时,相关指数的值越大,说明拟合的效果越好;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;

④对分类变量,若它们的随机变量的观测值越小,则判断“有关系”的把握程度越大.

其中正确的说法是

A. ①④B. ②④C. ①③D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】狄利克雷是德国著名数学家,函数,被称为狄利克雷函数,下面给出关于狄利克雷函数的五个结论:

①若是无理数,则

②函数的值域是

③函数是偶函数;

④若为有理数,则对任意的恒成立;

⑤存在不同的三个点,使得为等边三角形.

其中正确结论的序号是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

1)求数列的通项公式;

2)求证:数列是等差数列,求数列的通项公式;

3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形的四个顶点都在椭圆上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差不为零,且成等比数列,数列满足

1)求数列的通项公式;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点.将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥PDCE的外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线的准线被椭圆截得的线段长为

(1)求椭圆的方程;

(2)如图,点分别是椭圆的左顶点、左焦点直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)处取得极值,求的值;

(2),试讨论函数的单调性;

(3)时,若存在正实数满足,求证:.

查看答案和解析>>

同步练习册答案