精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.
(1). (2)见解析;(3)
(1)设抛物线的方程为,则此准线方程为,根据抛物线的定义可知,从而可知p=1,所以抛物线方程为.

(2) 由题意知直线轴不平行,设所在直线方程为显然P、Q的纵坐标就是此方程的两个根,然后再由韦达定理可知 根据进而得到 所以 展开整理将韦达定理代入即可得到直线的方程为据此可判定直线PQ一定过定点.
(3)在(2)的基础上可知若存在N点,则点必在直线上,所以,因而点N是直线与抛物线的交点,然后消去y得到关于x的一元二次方程,根据判别式判断此方程组是否有解即可.
(1)由题意可设抛物线的方程为,则由抛物线的定义可得,即,所以抛物线的方程为 .     ……4分
(2)由题意知直线轴不平行,设所在直线方程为
其中
 
 所以


所以直线的方程为
 
(3)假设
上,
的解,消去
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线l:  y="x-2" 与抛物线y2=2x相交于两点A、B,
(1)求证:OA⊥OB
(2)求线段AB的长度

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点到准线的距离为4,则此抛物线的焦点坐标为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)曲线上任意一点M满足, 其中F(-F( 抛物线的焦点是直线y=x-1与x轴的交点, 顶点为原点O.
(1)求的标准方程;
(2)请问是否存在直线满足条件:①过的焦点;②与交于不同
两点,且满足?若存在,求出直线的方程;若不
存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线的焦点,是该抛物线上的动点,则线段中点的轨迹方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连接抛物线的焦点与点所得的线段与抛物线交于点,设点为坐标原点,则三角形的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足
(为坐标原点),记点的轨迹为.
(1)求曲线的方程;
(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x的焦点是F准线是l,则过点F和点M(4,4)且与准线l相切的圆有(  )
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y=的焦点坐标是______________.

查看答案和解析>>

同步练习册答案