精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位长度,沿y轴正方向平移5个单位长度,得到直线l1.再将直线l1沿x轴正方向平移1个单位长度,沿y轴负方向平移2个单位长度,又与直线l重合.若直线l与直线l1关于点(23)对称,则直线l的方程是________________.

【答案】6x8y10

【解析】

根据平移得到l1ykx3)+5b和直线:ykx34kb,解得k,再根据对称解得b,计算得到答案.

由题意知直线l的斜率存在,设直线l的方程为ykxb

则直线l1ykx3)+5b,平移后的直线方程为ykx31)+b52

ykx34kb,∴b34kb,解得k

∴直线l的方程为yxb,直线l1yxb

取直线l上的一点 ,则点P关于点(23)的对称点为

,解得b.

∴直线l的方程是 ,即6x8y10.

故答案为:6x8y10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?

2)将同学乙的成绩的频率分布直方图补充完整;

3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线

(Ⅰ)求的方程;

(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,其中为棱上的点,且

1)求证:平面

2)求二面角的余弦值;

3)设为棱上的点(不与重合),且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属不合格的零件,其中分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若一个零件的尺寸是,试判断该零件是否属于不合格的零件;

2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位长度,沿y轴正方向平移5个单位长度,得到直线l1.再将直线l1沿x轴正方向平移1个单位长度,沿y轴负方向平移2个单位长度,又与直线l重合.若直线l与直线l1关于点(23)对称,则直线l的方程是________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的偶函数和奇函数满足

1)求的解析式;

2)求证:在区间上单调递增;并求在区间的反函数;

3)设(其中为常数),若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,前项和为,且.

1)求的值;

2)证明:数列是等差数列,并写出其通项公式;

3)设),试问是否存在正整数(其中,使得成等比数列?若存在,求出所有满足条件的数对;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

同步练习册答案