精英家教网 > 高中数学 > 题目详情

【题目】已知函数是偶函数.

(1)的值;

(2)若函数的图像与的图像有交点,求的取值范围;

(3)若函数,是否存在实数使得最小值为1,若存在,求出的值;若不存在,请说明理由.

【答案】(1)-1;(2);(3)存在使得最小值为1.

【解析】

1)利用函数为偶函数即对任意都有,即可解出的值.

2)函数的图像与的图像有交点,即,参变分离即有解,求出函数的值域即可得出答案.

3)代入化简得,令,则,讨论在区间的最值,即可得出答案.

1为偶函数

对任意都成立,

2)由题知有解,

,则有交点,

的范围为.

3

对称轴,开口向上

时, 上递增,

时,,此时无解

时,上递减,,此时无解

综上,存在使得最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的三边长分别为,,,MAB边上的点,P是平面ABC外一点.给出下列四个命题:①若平面ABC,则三棱锥的四个面都是直角三角形;②若平面ABC,且M是边AB的中点,则有;③若,平面ABC,则面积的最小值为;④若,P在平面ABC上的射影是内切圆的圆心,则点P到平面ABC的距离为.其中正确命题的序号是________.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若中心在原点的椭圆与双曲线有共同的焦点,且它们的离心率互为倒数,圆的直径是椭圆的长轴,C是椭圆的上顶点,动直线AB过C点且与圆交于A、B两点,CD垂直于AB交椭圆于点D.

(1)求椭圆的方程;

(2)求面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义在[01]上,并且同时满足以下两个条件的函数fx)称为G函数.

对任意的x∈[01],总有fx≥0

x1≥0x2≥0x1+x2≤1时,总有fx1+x2≥fx1+fx2)成立.已知函数gx=x2hx=2xb是定义在[01]上的函数.

1)试问函数gx)是否为G函数?并说明理由;

2)若函数hx)是G函数,求实数b组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是________度,即________rad.如果大轮的转速为(转/分),小轮的半径为10.5cm,那么小轮周上一点每1s转过的弧长是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)若的图像与直线相切,求

Ⅱ)若且函数的零点为,

设函数试讨论函数的零点个数.(为自然常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由题意可得 q1,且 an 0,由条件可得 a1a2…a13=4a1a2…a9,化简得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比数列{an}是递增数列,其前n项的积为Tn(n∈N*),若T13=4T9 ,设公比为q,

则由题意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比数列的性质可得 a8a15=a10a13=a11a12,∴a8a15=2.

故选:A.

【点睛】

本题主要考查等比数列的定义和性质,求得 a10a11a12a13=4是解题的关键.

型】单选题
束】
10

【题目】若直线y=2x上存在点(xy)满足约束条件,则实数m的最大值为

A. -1 B. 1 C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面为线段的中点, ,四边形为边长为1的正方形,平面平面为棱的中点.

(1)若为线上的点,且直线平面,试确定点的位置;

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案