精英家教网 > 高中数学 > 题目详情
三条直线相交于一点,可能确定的平面有(  )
分析:根据平面的基本性质和空间直线的位置关系举例加以说明,可得当三条直线a、b、c相交于一点0时,它们可能确定α、β、γ三个平面,也可能确定一个平面.由此得到本题答案.
解答:解:①若平面α、β、γ两两相交,有三条交线,设三条交点分别为a、b、c,
则直线a、b、c交于一点O,此时三条直线确定3个平面;

②若直线a、b、c交于一点O,且直线a、b、c是平面α的相交直线,
此时直线a、b、c只能确定平面α,三条直线确定1个平面
综上所述,得三条直线相交于一点,可能确定的平面有1个或3个
故选:D
点评:本题给出空间三条直线相交于一点,问它们能确定平面的个数.着重考查了空间直线的位置关系和平面的基本性质等知识,考查了空间想象能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形中,分别是的中点,分别是上的点,且.求证:三条直线相交于一点.

 


查看答案和解析>>

科目:高中数学 来源:2015届福建省高一下学期第一次月考数学试卷(解析版) 题型:选择题

三条直线相交于一点,可能确定的平面有

A.个              B.个             C.个             D.个或

 

查看答案和解析>>

科目:高中数学 来源: 题型:

空间三个平面两两相交有三条交线.求证:这三条直线相交于一点或相互平行.

查看答案和解析>>

同步练习册答案