【题目】如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.
(1)求证:EF⊥PB.
(2)试问:当点E在线段AB上移动时,二面角PFCB的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.
【答案】⑴见证明;⑵当点E在线段AB上移动时,二面角PFCB的平面角的余弦值为定值,且定值为.
【解析】
(1)由已知在Rt△ABC中,中EF∥BC,我们可得到EF⊥AB,即EF⊥EB,EF⊥EP,由线面垂直的判定定理定理,易得EF⊥平面PEB,再由线面垂直的定义,即可得到EF丄PB;
(2)在平面PEB中,过P点作PD⊥BE于D,结合(I)的结论可得BH⊥平面BCFE,以B为坐标原点,BC,BE,BH方向分别为X,Y,Z轴正方向建立空间坐标系,则我们可以分别求出平面PFC与平面BFC的法向量,代入二面角的向量夹角公式中,求出其余弦值,判断后,即可得到答案.
(1)证明:在Rt△ABC中,∵EF∥BC
∴EF⊥AB
∴EF⊥EB,EF⊥EP,又由EB∩EP=E
∴EF⊥平面PEB
又∵PB平面PEB
∴EF⊥PB
(2)在平面PEB中,过P点作PD⊥BE于D,
由(1)知,EF⊥PD
∴PD⊥平面BCFE
在平面PEB中过点B作直线BH∥PD
则BH⊥平面BCFE
如图,以B为坐标原点,BC,BE,BH方向分别为X,Y,Z轴正方向建立空间坐标系,
设PE=x(0<x<4),又∵AB=BC=4
∴BE=4﹣x,EF=x
在Rt△PED中,∠PED=60°
∴PD=,DE=
∴BD=4﹣x﹣=4﹣
∴C(4,0,0),F(x,4﹣x,0),P(0,4﹣,)
从而=(x﹣4,4﹣x,0),=(﹣4,4﹣,)
设=(a,b,c)是平面PCF的一个法向量,则:
,
即
令b=1,则=(1,1,)是平面PCF的一个法向量,
又∵平面BCF的一个法向量为=(0,0,1)
设二面角P﹣FC﹣B的平面角为θ,则
Cosθ==
∴当点E在线段AB上移动时,二面角P﹣FC﹣B的平面角的余弦值为定值
科目:高中数学 来源: 题型:
【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为 , , .
(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤ ;
(Ⅲ) ≤xn≤ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.
(1)求证:MN∥BC;
(2)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求二面角P-DN-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某几何体的三视图和直观图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:平面BCN⊥平面C1NB1;
(2)求二面角C-NB1-C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①;
②∠BAC=60°;
③三棱锥D﹣ABC是正三棱锥;
④平面ADC和平面ABC的垂直.
其中正确的是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com