分析 根据题意,先依次分析5颗棋子不同的放法数目,又由于3颗黑子是相同的,2颗白子之间也是相同的,利用倍分法将其中重复的情况排除即可得答案.
解答 解:根据题意,在5×5的棋盘中,第一颗棋子有5×5种放法,
由于任意两颗棋子不在同一行且不在同一列,则第二颗棋子有4×4种放法,
第二颗棋子有4×4种放法,第三颗棋子有3×3种放法,第四颗棋子有2×2种放法,第五颗棋子有1种放法,
又由于3颗黑子是相同的,2颗白子之间也是相同的,
则故5颗棋子不同的排列方法种数$\frac{5×5×4×4×3×3×2×2×1}{3×2×1×2×1}$=1200种;
故答案为:1200.
点评 本题考查排列组合的综合运用,注意3颗黑子之间,2颗白子之间也是相同的,需要考虑其中重复的情况数目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 偶函数且最大值为2 | B. | 奇函数且最大值为2 | ||
C. | 奇函数且最大值为$\sqrt{2}$ | D. | 偶函数且最大值为$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com