精英家教网 > 高中数学 > 题目详情
11.不存在函数f(x)满足,对任意x∈R都有(  )
A.f(|x+1|)=x2+2xB.f(cos2x)=cosxC.f(sinx)=cos2xD.f(cosx)=cos2x

分析 若f(cos2x)=cosx,则有f(1)=1且f(1)=-1,根据函数的定义,可得结论.

解答 解:若f(|x+1|)=x2+2x=(x+1)2-1,
则f(x)=x2-1,x≥1,故存在函数f(x),使A成立;
若f(sinx)=cos2x=1-2sin2x,
则f(x)=1-2x2,-1≤x≤1,故存在函数f(x),使C成立;
若f(cosx)=cos2x=2cos2x-1,
则f(x)=2x2-1,-1≤x≤1,故存在函数f(x),使D 成立;
当x=0时,f(cos2x)=cosx可化为:f(1)=1,
当x=π时,f(cos2x)=cosx可化为:f(1)=-1,
这与函数定义域,每一个自变量都有唯一的函数值与其对应矛盾,
故不存在函数f(x)对任意x∈R都有f(cos2x)=cosx,
故选:B.

点评 本题考查的知识点是抽象函数及其应用,函数的定义,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设x、y、z分别表示甲、乙、丙3个盒子中的球数..
(1)求掷完3次后,x=0,y=1,z=2的概率;
(2)记ξ=x+z,求随机变量ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\vec a=(3,4)$,$\vec b=(9,x)$,$\vec c=(4,y)$且$\vec a∥\vec b$,$\vec a⊥\vec c$.
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$;
(2)若$\vec m=2\vec a-\vec b$,$\vec n=\vec a+\vec c$,求向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图11).若光线QR经过△ABC的重心,则BP等于(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若角θ是第四象限的角,则角${-^{\;}}\frac{θ}{2}$是(  )
A.第一、三象限角B.第二、四象限角C.第二、三象限角D.第一、四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正方形的中心为(0,-1),其中一条边所在的直线方程为3x+y-2=0.求其他三条边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中正确的是(  )
A.经过不同的三点有且只有一个平面
B.没有公共点的两条直线一定平行
C.垂直于同一平面的两直线是平行直线
D.垂直于同一平面的两平面是平行平面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}中,a3=4,a4a6=32,则$\frac{{{a_{10}}-{a_{12}}}}{{{a_6}-{a_8}}}$的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案