精英家教网 > 高中数学 > 题目详情

【题目】从向阳小区抽取100户居民进行月用电量调查,为制定阶梯电价提供数据,发现其用电量都在50到350度之间,制作频率分布直方图的工作人员粗心大意,位置t处未标明数据,你认为t=(

A.0.0041
B.0.0042
C.0.0043
D.0.0044

【答案】D
【解析】解:由频率分布直方图,得
(0.0024+0.0036+0.0060+t+0.0024+0.0012)×50=1
∴t=0.0044.
故选:D.
【考点精析】掌握频率分布直方图是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆 轴的正半轴交于点,以为圆心的圆 )与圆交于 两点.

(1)若直线与圆切于第一象限,且与坐标轴交于 ,当直线长最小时,求直线的方程;

(2)设是圆上异于 的任意一点,直线分别与轴交于点,问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求的定义域及其零点;

(2)讨论并用函数单调性定义证明函数在定义域上的单调性;

(3)设,当时,若对任意,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形是菱形,四边形是矩形,的中点.

(Ⅰ)求证:平面

(II)在线段上是否存在,使三棱锥的体积为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人排成一排,在下列情况下,各有多少种不同排法?

(1)甲不排头,也不排尾,

(2)甲、乙、丙三人必须在一起

(3)甲、乙之间有且只有两人,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于回归分析的说法中错误的是( )

A. 回归直线一定过样本中心

B. 残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适

C. 两个模型中残差平方和越小的模型拟合的效果越好

D. 甲、乙两个模型的分别约为0.98和0.80,则模型乙的拟合效果更好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,在平面直角坐标系中,直线经过点,倾斜角.

(1)写出曲线的直角坐标方程和直线的参数方程;

(2)设与曲线相交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大小;
(2)若c=2,则当a,b分别取何值时,△ABC的面积取得最大值,并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,如表为抽样试验结果:

转速x(转/秒)

16

14

12

8

每小时生产有

缺点的零件数y(件)

11

9

8

5

(1)用相关系数r对变量yx进行相关性检验;

(2)如果yx有线性相关关系,求线性回归方程;

(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?(结果保留整数)

参考数据:

参考公式:相关系数计算公式:,回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案