精英家教网 > 高中数学 > 题目详情

【题目】已知,其中,则下列判断正确的是__________.(写出所有正确结论的序号)

关于点成中心对称;

上单调递增;

③存在,使

④若有零点,则

的解集可能为.

【答案】①③⑤

【解析】

对于①,根据函数为奇函数并结合函数图象的平移可得正确.对于②,分析可得当时,函数上单调递减,故不正确.对于③,由,可得,从而得

,可得结果成立.对于④,根据③中的函数的值域可得时方程也有解.对于⑤,分析可得当时满足条件,由此可得⑤正确.

对于①,令,则该函数的定义域为,且函数为奇函数,故其图象关于原点对称.又函数的图象是由的图象向上或向下平移个单位而得到的,所以函数图象的对称中心为,故①正确.

对于②,当时,,若,则函数上单调递减,所以函数单调递增;函数上单调递增,所以函数单调递减.故②不正确.

对于③,令,则当时,

所以

,则成立.故③正确.

对于④,若有零点,则,得,从而得

,结合③可得当有零点时,只需即可,而不一定为零.故④不正确.

对于⑤,由,得.取,则,整理得.当时,方程的两根为.又函数为奇函数,故方程的解集为.故⑤正确.

综上可得①③⑤正确.

故答案为:①③⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱柱中,平面,点中点.

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为,若为抛物线上第一象限的一动点,过的垂线交准线于点,交抛物线于两点.

(Ⅰ)求证:直线与抛物线相切;

(Ⅱ)若点满足,求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD-A1B1C1D1中,AB=BCEF分别是AB1BC1的中点.有下列结论:

EFBB1

EF∥平面A1B1C1D1

EFC1D所成角为45°

EF⊥平面BCC1B1

其中不成立的是(  )

A.②③

B.①④

C.③④

D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图:

(Ⅰ)若将购买金额不低于元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取人,求这人中消费金额不低于元的人数;

(Ⅱ)从(Ⅰ)中的人中抽取人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求人中至少有人购买金额不低于元的概率;

(Ⅲ)为吸引顾客,该村特推出两种促销方案,

方案一:每满元可立减元;

方案二:金额超过元但又不超过元的部分打折,金额超过元但又不超过元的部分打折,金额超过元的部分打折.

若水果的价格为元/千克,某游客要购买千克,应该选择哪种方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在直线上的圆,其圆心到轴的距离恰好等于圆的半径,在轴上截得弦长为,则圆的方程为(

A.B.

C.D.

查看答案和解析>>

同步练习册答案