如图,在侧棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1与平面B1C1EF所成的角的正弦值.
(1)见解析 (2)
解析(1)证明:①因为C1B1∥A1D1,C1B1?平面ADD1A1,
所以C1B1∥平面A1D1DA.
又因为平面B1C1EF∩平面A1D1DA=EF,
所以C1B1∥EF,所以A1D1∥EF.
②因为BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.
又因为B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,
所以B1C1⊥BA1.
在矩形ABB1A1中,F是AA1的中点,
tan∠A1B1F=tan∠AA1B=,
即∠A1B1F=∠AA1B,
故BA1⊥B1F.
所以BA1⊥平面B1C1EF.
(2)解:设BA1与B1F交点为H,连接C1H.
由(1)知BA1⊥平面B1C1EF,
所以∠BC1H是BC1与平面B1C1EF所成的角.
在矩形AA1B1B中,AB=,AA1=2,得BH=.
在Rt△BHC1中,BC1=2,BH=,得
sin∠BC1H==.
所以BC1与平面B1C1EF所成角的正弦值是.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面是矩形,,,,是棱的中点.
(1)求证:平面;
(2)求证:平面;
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1;
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.
(1)求证:BF∥平面A′DE;
(2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在矩形ABCD中,AB=a,BC=a,以对角线AC为折线将直角三角形ABC向上翻折到三角形APC的位置(B点与P点重合),P点在平面ACD上的射影恰好落在边AD上的H处.
(1)求证:PA⊥CD;
(2)求直线PC与平面ACD所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com