精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,每个侧面均为正方形,D为底边AB的中点,E为侧棱的中点.

1)求证:平面

2)求证:平面

3)若,求三棱锥的体积.

【答案】(1)见解析

(2)见解析

(3)

【解析】

1)设的交点为,根据,且,得到四边形为平行四边形,故平面

2)证明平面,可得平面,故有,由正方形的两对角线的性质可得

从而证得平面

3)利用等体积法将转化为求可得.

证明:(1)设的交点为O,连接EO,连接OD.

因为O的中点,DAB的中点,

所以.E中点,

所以,且

所以.

所以,四边形ECOD为平行四边形.所以.

平面平面,则平面.

2)因为三棱柱各侧面都是正方形,所以.

所以平面ABC.因为平面ABC,所以.

由已知得,所以

所以平面.由(1)可知,所以平面.

所以.因为侧面是正方形,所以.

平面平面

所以平面.

3)解:由条件求得,可以求得

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当aR时,讨论函数fx)的单调性;

2)对任意的x∈(1+∞)均有fx)<ax,若aZ,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,点在椭圆.

1)求椭圆的标准方程;

2)是否存在斜率为的直线与椭圆相交于,两点,使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推,若该数列前项和满足:①2的整数次幂,则满足条件的最小的

A. 21B. 91C. 95D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnax+b)﹣xabRab≠0).

1)讨论fx)的单调性;

2)若fx≤0恒成立,求eab1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)证明:,都有

2)若函数有且只有一个零点,求的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则nm的值不可以是下列四个选项中的哪组( )

A.n=360m=14B.n=420m=15C.n=540m=18D.n=660m=19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于两点.

1)求椭圆的方程;

2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

同步练习册答案