【题目】如图,在三棱柱中,每个侧面均为正方形,D为底边AB的中点,E为侧棱的中点.
(1)求证:平面;
(2)求证:平面;
(3)若,求三棱锥的体积.
【答案】(1)见解析
(2)见解析
(3)
【解析】
(1)设和的交点为,根据,且,得到四边形为平行四边形,故,平面.
(2)证明平面,可得平面,故有,由正方形的两对角线的性质可得,
从而证得平面.
(3)利用等体积法将转化为求可得.
证明:(1)设和的交点为O,连接EO,连接OD.
因为O为的中点,D为AB的中点,
所以且.又E是中点,
所以,且,
所以且.
所以,四边形ECOD为平行四边形.所以.
又平面,平面,则平面.
(2)因为三棱柱各侧面都是正方形,所以,.
所以平面ABC.因为平面ABC,所以.
由已知得,所以,
所以平面.由(1)可知,所以平面.
所以.因为侧面是正方形,所以.
又,平面,平面,
所以平面.
(3)解:由条件求得,,可以求得
所以
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右焦点分别为,,点在椭圆上.
(1)求椭圆的标准方程;
(2)是否存在斜率为的直线与椭圆相交于,两点,使得?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推,若该数列前项和满足:①②是2的整数次幂,则满足条件的最小的为
A. 21B. 91C. 95D. 10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n和m的值不可以是下列四个选项中的哪组( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的一个顶点与抛物线的焦点重合,、分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于、两点.
(1)求椭圆的方程;
(2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数(万人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
该景点为了预测2021年的旅游人数,建立了与的两个回归模型:
模型①:由最小二乘法公式求得与的线性回归方程;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
(1)根据表中数据,求模型②的回归方程.(精确到个位,精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com