精英家教网 > 高中数学 > 题目详情

【题目】如图,菱形ABCD中,∠ABC=60°,ACBD相交于点OAE⊥平面ABCDCFAEABAE=2.

(1)求证:BD⊥平面ACFE

(2)当直线FO与平面BED所成的角为45°时,求异面直线OFBE所成的角的余弦值大小.

【答案】(1)见解析(2)

【解析】试题分析:(1)由AE平面ABCD得出AEBD,由菱形性质得BD⊥AC,故BD⊥平面ACFE;

(2)以O为原点建立坐标系,设CF=a,求出和平面BDE的法向量,利用直线FO与平面BED所成角的大小为45°,可得,即可求出a的值.

试题解析:

(1)证明:四边形ABCD是菱形,

BDAC.

AE平面ABCDBD平面ABCD

BDAE.

ACAEA,∴BD平面ACFE.

(2)O为坐标原点,的方向为x轴,y轴正方向,过O且平行于CF的直线为z(向上为正方向),建立如图所示的空间直角坐标系Oxyz,设CFa,则B(0,,0),D(0,-,0),E(1,0,2),F(-1,0,a)(a>0),=(-1,0,a).

设平面BED的法向量为n=(xyz),

z=1,则n=(-2,0,1),

由题意得sin 45°=|cos〈n〉|=

解得a=3a=-.

a>0,得a=3,

=(-1,0,3),=(1,-,2),

∴cos〈〉=

故异面直线OFBE所成的角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某名校从年到年考入清华,北大的人数可以通过以下表格反映出来。(为了方便计算,将年编号为年编为,以此类推……)

年份

人数

(1)将这年的数据分为人数不少于人和少于人两组,按分层抽样抽取年,问考入清华、北大的人数不少于20的应抽多少年?在抽取的这年里,若随机的抽取两年恰有一年考入清华、北大的人数不少于的概率是多少?;

(2)根据最近年的数据,利用最小二乘法求出与之间的线性回归方程,并用以预测年该校考入清华、北大的人数。(结果要求四舍五入至个位)

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在标有的袋中有个红球和个白球,这些球除颜色外完全相同.

Ⅰ)若从袋中依次取出个球,求在第一次取到红球的条件下,后两次均取到白球的概率;

Ⅱ)现从甲袋中取出个红球, 个白球,装入标有的空袋.若从甲袋中任取球,乙袋中任取球,记取出的红球的个数为,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数.

(1)求实数的值;

(2)求函数上的值域;

(3)令,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某贫困地区截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.现从这些尚未实现小康的家庭中随机抽取50户,得到这50户家庭2018年的家庭人均年纯收入的频率分布直方图.

1)补全频率分布直方图,并求出这50户家庭人均年纯收入的中位数和平均数(精确到元);

220197月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭201916月的人均月纯收入如表:

月份/2019(时间代码)

1

2

3

4

5

6

人居月纯收入 ()

275

365

415

450

470

485

由散点图及相关性分析发现:家庭人均月纯收入与时间代码之间具有较强的线性相关关系,请求出回归直线方程;并由此估计该家庭20201月的家庭人均月纯收入.

可能用到的数据:

参考公式:线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且.

(1)求关于的函数解析式,并求出定义域;

(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标。分值权重表如下:

总分

技术

商务

报价

100%

50%

10%

40%

技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的。报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分。若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分。在某次招标中,若基准价为1000(万元)。甲、乙两公司综合得分如下表:

公司

技术

商务

报价

80分

90分

70分

100分

甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是

A. 7375.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,三点中恰有二点在椭圆上,且离心率为

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为椭圆的左右顶点, 中点,求证:直线与直线它们的斜率之积为定值;

(3)若椭圆的右焦点为,过的直线与椭圆交于,求证:直线与直线斜率之和为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】01234这五个数字组成无重复数字的自然数.

(Ⅰ)在组成的三位数中,求所有偶数的个数;

(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301423等都是“凹数”,试求“凹数”的个数;

(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.

查看答案和解析>>

同步练习册答案