精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=3sinx+2cosx+1.若实数a,b,c使得af(x)+bf(x﹣c)=1对任意实数x恒成立,则 的值为(
A.﹣1
B.
C.1
D.

【答案】A
【解析】解:由题设可得f(x)= sin(x+θ)+1,f(x﹣c)= sin(x+θ﹣c)+1,其中cosθ= ,sinθ= (0<θ< ),
∴af(x)+bf(x﹣c)=1可化成 asin(x+θ)+ bsin(x+θ﹣c)+a+b=1,
(a+bcosc)sin(x+θ)﹣ bsinccos(x+θ)+(a+b﹣1)=0,
由已知条件,上式对任意x∈R恒成立,故必有
若b=0,则式(1)与式(3)矛盾;
故此b≠0,由(2)式得到:sinc=0,
当cosc=1时,有矛盾,故cosc=﹣1,
由①③知a=b=
=﹣1.
故选A
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足2Sn=3an﹣1,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设anbn= ,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图4,四边形为正方形,平面于点,交于点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和.若对任意的 则k的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,且,其中分别是的中点,动点在线段上运动时,下列四个结论:①

其中恒成立的为(

A. ①③ B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的最大值为3,其图象相邻两条对称轴之间的距离为.

(Ⅰ)求函数的解析式和当的单调减区间;

(Ⅱ)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到的图象,用“五点法”作出内的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列是等比数列,下列命题正确的个数为(

均为等比数列; 成等差数列;

成等比数列; 均为等比数列

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是椭圆C: (a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】13分){an}是公比为正数的等比数列a1=2a3=a2+4

)求{an}的通项公式;

)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

同步练习册答案