精英家教网 > 高中数学 > 题目详情

已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,
(1)求的通项公式.
(2)记数列的前三项和为,求证:

(1)
(2)根据利用累加法来得到证明。

解析试题分析:解(1)是一个与无关的常数   2分
   4分
   6分
(2) 8分
又因为
  12分
所以:  12分
考点:等比数列
点评:主要是考查了的等比数列的通项公式以及求和的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,数列满足:.
(Ⅰ)求证数列是等比数列(要指出首项与公比);
(Ⅱ)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图像上,(其中
(Ⅰ)求证数列是等比数列;
(Ⅱ)设,求及数列的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为
(Ⅰ)设,证明:数列是等比数列;
(Ⅱ)求数列的前项和.
(Ⅲ)若,求不超过的最大的整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项…的最小值记为Bn,dn=An-Bn.
(I)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*),写出d1,d2,d3,d4的值;
(II)设d为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列;
(III)证明:若a1=2,dn=1(n=1,2,3…),则{an}的项只能是1或2,且有无穷多项为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在图中,(),

(1)求数列的通项
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列{}的前n 项和为,已知,,成等差数列。
(1)求{}的公比q;     (2)求=3,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知等比数列{}的公比为q,前n项和为Sn,且S1,S3,S2成等差数列.
(I)求公比q;
(II)若,问数列{Tn}是否存在最大项?若存在,求出该项的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正项数列中,前n项和为,且,且.
(1)求数列的通项公式;
(2)设,证明.

查看答案和解析>>

同步练习册答案