精英家教网 > 高中数学 > 题目详情

【题目】已知α,且sin cos .

(1)cos α的值;

(2)sin(αβ)=- β,求cos β的值.

【答案】1;2

【解析】试题分析(1)把已知条件平方可得sin α,再由已知α,可得cos α的值.
(2)由条件可得-<αβ<, cos(αβ),再根据cos βcos[α(αβ)],利用两角和差的余弦公式,运算求得结果.

试题解析: (1)已知sin cos ,两边同时平方,

12sincos ,则sin α .

<α,所以cos α=- =- .

(2)因为<α <β,所以-<αβ<.

sin(αβ)=- ,所以cos(αβ) .

cos βcos[α(αβ)]cos αcos(αβ)sin αsin(αβ)

=- × × =-.

点睛: 本题考查的是三角函数式化简中的给值求值问题,看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分β=[α(αβ),从而正确使用公式;由条件可得-<αβ<, cos(αβ),再根据cos βcos[α(αβ)],利用两角和差的余弦公式,运算求得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2013·湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:

yx负相关且=2.347x-6.423;

yx负相关且=-3.476x+5.648;

yx正相关且=5.437x+8.493;

yx正相关且=-4.326x-4.578.

其中一定不正确的结论的序号是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为2cm的正方体ABCD﹣A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面平面 分别为 的中点, .

(1)求证: 平面

(2)若上任一点,证明平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;

(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?

参考公式:回归直线的方程

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出40个数:1,2,4,7,11,16,…,要计算这40个数的和,如图给出了该问题的程序框图,那么框图①处和执行框②处可分别填入( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)已知点和函数图像上动点,对任意,直线倾斜角都是钝角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形中, ,将四边形沿着折叠,得到图2所示的三棱锥,其中

(1)证明:平面平面

(2)若中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面为矩形, .点在棱上,平面与棱交于点

(Ⅰ)求证:

(Ⅱ)求证:平面平面

(Ⅲ)若 ,平面平面,求二面角的大小.

查看答案和解析>>

同步练习册答案