精英家教网 > 高中数学 > 题目详情

已知双曲线C:数学公式(a>0,b>0)
(1)若a=4,b=3,过点P(6,3)的动直线l与双曲线C相交与不同两点A,B时,在线段AB上取点Q,满足数学公式,求证点Q总在某定直线上.
(2)在双曲线C:数学公式(a>0,b>0),过双曲线外一点P(m,n)的动直线l与双曲线C相交与不同两点A,B时,在线段AB上取点Q,满足数学公式,则点Q在哪条定直线上?
(3)试将该结论推广至其它圆锥曲线上,证明其中的一种情况,并猜想该直线具有的性质.

解:(1)由题意得双曲线C的方程为

设点Q、A、B的坐标分别为(x,y),(x1,y1),(x2,y2).
由题设知 均不为零,记 ,则λ>0且λ≠1
又A,P,B,Q四点共线,从而
于是
从而 ①,②,
又点A、B在椭圆C上,即 ③, ④,
①×9-②×16并结合③、④得9x-8y=24,
即点Q(x,y)总在定直线9x-8y=24上.
(2)类似于(1)可得结论:在双曲线C:(a>0,b>0),过双曲线外一点P(m,n)的动直线l与双曲线C相交与不同两点A,B时,在线段AB上取点Q,满足
得出点Q在定直线b2mx-a2ny=a2b2上;
(3)该结论推广至其它椭圆上,有:
在椭圆C:(a>0,b>0),过椭圆外一点P(m,n)的动直线l与椭圆C相交与不同两点A,B时,在线段AB上取点Q,满足,得出点Q在定直线b2mx+a2ny=a2b2上;
类似于(1)得:
于是
从而 ①,②,
又点A、B在椭圆C上,即 ③, ④,
①×b2+②×a2并结合③、④得b2mx+a2ny=a2b2
即点Q(x,y)总在定直线b2mx+a2ny=a2b2上.
分析:(1)a=4,b=3,可得双曲线的方程.欲证点Q总在某定直线上,所以先设点Q的坐标为变量(x,y),点A、B的坐标分别为参数(x1,y1)、(x2,y2),然后根据已知条件可变形得 ,设其比值为λ则有 ,此时利用定比分点定理可得A、B、P三点横坐标关系及纵坐标关系,同时可得A、B、Q三点横坐标关系及纵坐标关系,又因为点A、B的坐标满足双曲线方程,再利用已得关系式可整体替换,同时消去参数λ,最后得到变量x、y的关系式,则问题得证.
(2)类似于(1)可得结论:在双曲线C:(a>0,b>0),过双曲线外一点P(m,n)的动直线l与双曲线C相交与不同两点A,B时,在线段AB上取点Q,满足,得出点Q在那条定直线上;
(3)该结论推广至其它椭圆上,有:在椭圆C:(a>0,b>0),过椭圆外一点P(m,n)的动直线l与椭圆C相交与不同两点A,B时,在线段AB上取点Q,满足,得出点Q在定直线b2mx+a2ny=a2b2上.
点评:本题综合考查双曲线性质与定比分点定理,同时考查构造消元处理方程组的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年潍坊市六模)(12分)已知双曲线Ca>0,b>0),B是右顶点,F是右焦点,点Ax轴正半轴上,且满足成等比数列,过F作双曲线C在第一、第三象限的渐近线的垂线l,垂足为P

  (1)求证:

  (2)若l与双曲线C的左、右两支分别相交于点DE,求双曲线C的离心率e的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:=1(a>0,b>0),B是右顶点,F是右焦点,点A在x轴的正半轴,且满足||、||、||成等比数列,过F作双曲线C在第一、三象限的渐近线的垂线l,垂足为P.

(1)求证:·=·

(2)若l与双曲线C的左、右两支分别交于点D、E,求双曲线C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:=1(a>0,b>0),B是右顶点,F是右焦点,点A在x轴正半轴上,且||、||、||成等比数列,过F作双曲线C在第一、三象限的渐近线的垂线l,垂足为P.

(1)求证:·=·

(2)若l与双曲线C的左、右两支分别相交于点D、E,求双曲线离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(全国大纲卷解析版) 题型:解答题

已知双曲线C:(a>0,b>0)的左、右焦点分别为,离心率为3,直线y=2与C的两个交点间的距离为.

(Ⅰ)求a,b;

(Ⅱ)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:成等比数列.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高三(上)周练数学试卷(12.22)(解析版) 题型:填空题

在平面直角坐标系xOy中,已知双曲线C:(a>0)的一条渐近线与直线l:2x-y+1=0垂直,则实数a=   

查看答案和解析>>

同步练习册答案