精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x2-(2a+1)x+alnx,求函数f(x)的单调区间.

分析 先求出函数的导数,通过讨论a的范围,解关于导函数的不等式,从而求出函数的单调区间.

解答 解:∵f(x)=x2-(2a+1)x+alnx,(x>0),
∴f′(x)=2x-(2a+1)+$\frac{a}{x}$=$\frac{2{x}^{2}-(2a+1)x+a}{x}$=$\frac{(2x-1)(x-a)}{x}$,
①a≤0时,令f′(x)>0,解得:x>$\frac{1}{2}$,令f′(x)<0,解得:0<x<$\frac{1}{2}$,
∴f(x)在(0,$\frac{1}{2}$)递减,在($\frac{1}{2}$,+∞)递增;
②0<a<$\frac{1}{2}$时,令f′(x)>0,解得:x>$\frac{1}{2}$或0<x<a,令f′(x)<0,解得:a<x<$\frac{1}{2}$,
∴f(x)在(0,a),($\frac{1}{2}$,+∞)递增,在(a,$\frac{1}{2}$)递减;
③a=$\frac{1}{2}$时,f′(x)≥0,f(x)在(0,+∞)单调递增;
④a>$\frac{1}{2}$时,令f′(x)>0,解得:0<x<$\frac{1}{2}$或x>a,令f′(x)<0,解得:$\frac{1}{2}$<x<a,
∴f(x)在(0,$\frac{1}{2}$),(a,+∞)递增,在($\frac{1}{2}$,a)递减.

点评 本题考查了函数的单调性问题,考查导数的应用,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求值:
(1)81${\;}^{0.5lo{g}_{3}5}$;
(2)10lg3-10log51+eln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.非零实数a,b满足4a2-2ab+4b2-c=0,当|2a+b|取得最大值时,则$\frac{b}{a}$的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=2x+$\frac{a}{{2}^{x}}$-1(a为实数).
(1)x∈R,试讨论f(x)的单调性;
(2)当a=0时,若函数y=g(x)的图象与y=f(x)的图象关于直线x=l对称,求函数y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,已知(b+c):(c+a):(a+b)=4:5:6,则sinA:sinB=7:5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f($\frac{1}{2}$)=0,则满足f(x)>0的x的集合为(-$\frac{1}{2},0$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若a+$\frac{1}{a}$=3,则a2+a3+a4+$\frac{1}{{a}^{2}}$+$\frac{1}{{a}^{3}}$+$\frac{1}{{a}^{4}}$=73.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解方程组$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=5(x+y)}\\{{x}^{2}+xy+{y}^{2}=43}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前$\frac{N}{2}$和后$\frac{N}{2}$个位置,得到排列P1=x1x3…xN-1x2x4…xN,将此操作称为C变换,将P1分成两段,每段$\frac{N}{2}$个数,并对每段作C变换,得到p2;当2≤i≤n-2时,将Pi分成2i段,每段$\frac{N}{2^i}$个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置,当N=32时,x21位于P3中的第7个位置.

查看答案和解析>>

同步练习册答案