精英家教网 > 高中数学 > 题目详情
5.已知直线3x+4y+m=0与圆x2+y2+x-2y=0相交于P,Q两点,O为坐标原点,若OP⊥OQ,求m的值.

分析 由已知可得O在圆x2+y2+x-2y=0上,若OP⊥OQ,则PQ为圆的直径,即直线3x+4y+m=0过圆心(-$\frac{1}{2}$,1),代入可得答案.

解答 解:∵圆x2+y2+x-2y=0过原点,
若OP⊥OQ,则PQ为圆的直径,
即直线3x+4y+m=0过圆心(-$\frac{1}{2}$,1),
∴-$\frac{1}{2}$×3+4+m=0,
解得:m=-$\frac{5}{2}$

点评 本题主要考查点与圆的位置关系,圆周角定理,点与直线的位置关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,点E,F分别是四边形ABCD的边AD,BC的中点,AB=4,DC=6,$\overrightarrow{AB}$与$\overrightarrow{DC}$所成角是60°.
(1)若$\overrightarrow{EF}$=x$\overrightarrow{AB}$+y$\overrightarrow{DC}$,求实数x,y的值;
(2)求线段EF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从5名同学中任选3名,分别担任班长、团支部书记和学习委员,求:
(1)甲恰好被选上,并且担任班长的概率?
(2)甲、乙两人均被选上,并且甲任班长,乙任团支部书记的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.幂函数f(x)=(t3-t+1)x${\;}^{\frac{7+3t-2{t}^{2}}{5}}$是偶函数,且在(0,+∞)上为增函数,求函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=cos(x+2φ)+2sinφsin(x+φ)的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线y=$\sqrt{1-{x}^{2}}$与直线y=x+b始终有交点,则b的取值范围是[-1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$y=sin({2x+\frac{π}{3}})$图象的对称中心可能是(  )
A.$({-\frac{π}{6},0})$B.$({-\frac{π}{12},0})$C.$({\frac{π}{6},0})$D.$({\frac{π}{12},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2asinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$(a>0,ω>0)的最大值为2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1-x2|的最小值为$\frac{π}{2}$.
(1)求函数f(x)的解析式及其对称轴;   
(2)求f(x)在区间(0,$\frac{π}{8}$]的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.分解因式:x2-xy+3y-3x=(x-y)(x-3).

查看答案和解析>>

同步练习册答案