【题目】已知抛物线上一点,与关于抛物线的对称轴对称,斜率为1的直线交抛物线于、两点,且、在直线两侧.
(1)求证:平分;
(2)点为抛物线在、处切线的交点,若,求直线的方程.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l的参数方程为(为参数,),抛物线C的普通方程为.
(1)求抛物线C的准线的极坐标方程;
(2)设直线l与抛物线C相交于A,B两点,求的最小值及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥中,OA、OB、OC所在直线两两垂直,且,CA与平面AOB所成角为,D是AB中点,三棱锥的体积是.
(1)求三棱锥的高;
(2)在线段CA上取一点E,当E在什么位置时,异面直线BE与OD所成的角为?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在R上的函数满足:对于任意实数x、y,总有恒成立,我们称为“类余弦型”函数.
已知为“类余弦型”函数,且,求和的值;
在的条件下,定义数列2,3,求的值.
若为“类余弦型”函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数,满足,判断和的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线:交于,两点,且的面积为16(为坐标原点).
(1)求的方程.
(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com