精英家教网 > 高中数学 > 题目详情
16.曲线$y={x^3}-\sqrt{3}x+2$上的任意一点P处切线的倾斜角的取值范围是(  )
A.$[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$B.$[{\frac{2π}{3},π})$C.$[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$D.$[{\frac{5π}{6},π})$

分析 设P(m,n),求出函数y的导数,求得切线的斜率,由二次函数的性质可得斜率的范围,再由直线的斜率公式k=tanα(0≤α<π且α≠$\frac{π}{2}$),即可得到所求范围.

解答 解:设P(m,n),
y=x3-$\sqrt{3}$x+2的导数为y′=3x2-$\sqrt{3}$,
即有切线的斜率为k=3m2-$\sqrt{3}$,
由直线的斜率公式k=tanα(0≤α<π,且α≠$\frac{π}{2}$),
可得tanα≥-$\sqrt{3}$,
解得α∈$[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$,
故选A.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,以及直线的斜率公式和倾斜角的范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点 A(-4,0),B(4,0),C(0,4),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则 b的取值范围是(  )
A.$({0,4-2\sqrt{2}})$B.$({4-2\sqrt{2},2})$C.$({4-2\sqrt{2},\frac{4}{3}}]$D.$({\frac{4}{3},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,有一直径为8米的半圆形空地,现计划种植果树,但需要有辅助光照.半圆周上的C处恰有一可旋转光源满足果树生长的需要,该光源照射范围是$∠ECF=\frac{π}{6}$,点E,F在直径AB上,且$∠ABC=\frac{π}{6}$.
(1)若$CE=\sqrt{13}$,求AE的长;
(2)设∠ACE=α,求该空地种植果树的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用总长14.8m的钢条制作一个长方体容器的框架,若容器底面的长比宽多0.5m,要使它的容积最大,则容器底面的宽为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个屋顶的某一个斜面成等腰梯形,最上面一层铺了21块瓦片,往下每一层多铺一块瓦片,斜面上铺了20层瓦片,问共铺了多少块瓦片.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程x2-2x+m=0有两个不相等的实数根;命题q:对任意x∈[0,8],不等式log${\;}_{\frac{1}{3}}$(x+1)≥m2-3m恒成立.若“p或q”是真命题,“p且q”是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知偶函数f(x)在区间(-∞,0]单调递减,f(-1)=$\frac{1}{2}$,则满足2f(2x-1)-1<0的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中为偶函数的是(  )
A.y=sin|x|B.y=sin2xC.y=-sinxD.y=sinx+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.中央电视台第一套节目午间新闻的播出时间是每天中午12:00到12:30,在某星期天中午的午间新闻中将随机安排播出时长5分钟的有关电信诈骗的新闻报道.若小张于当天12:20打开电视,则他能收看到这条新闻的完整报道的概率是(  )
A.$\frac{2}{5}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案