精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系中,已知直线的参数方程为s为参数),以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于AB两点.

(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;

(Ⅱ)已知点P的极坐标为,求的值.

【答案】(Ⅰ)的普通方程为:;曲线C的直角坐标方程为. (Ⅱ)

【解析】

(Ⅰ)由直线的参数方程能求出的普通方程,由曲线的极坐标方程转为,能求出曲线的直角坐标方程;

(Ⅱ)的角坐标为,直线的参数方程为为参数),代入曲线的直角坐标方程,结合韦达定理可得结果.

(Ⅰ)∵直线的参数方程为为参数),

的普通方程为:

又∵曲线的极坐标方程为,即

∴曲线的直角坐标方程为

即曲线的直角坐标方程为:.

(Ⅱ)点P的极坐标为,其直角坐标为

直线的参数方程为为参数)

代入曲线的直角坐标方程得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中,角的对边分别为________.是否存在以为边的三角形?如果存在,求出的面积;若不存在,说明理由.

从①;②;③这三个条件中任选一个,补充在上面问题中并作答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论的单调性;

2)当时,对任意的,且,都有,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)求的单调区间;

(Ⅱ)若,讨论关于x的方程在区间上实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为椭圆的右焦点,点A为椭圆的右顶点.

1)求过点FA且和直线相切的圆C的方程;

2)过点F任作一条不与轴重合的直线,直线与椭圆交于PQ两点,直线PAQA分别与直线相交于点MN.试证明:以线段MN为直径的圆恒过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性

(2)若函数在区间上存在两个不同零点求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉出现的新型冠状病毒是一种可以通过飞沫传播的变异病毒,某药物研究所为筛查该新型冠状病毒,需要检验血液是否为阳性,现有份血液样本,每份样本取到的可能性均等,有以下两种检验方式:①逐份检验,则需要检验n次;②混合检验,将其中份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份血液全为阴性,因此这k份血液样本检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份血液再逐份检验,此时这k份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阴性还是阳性都是独立的,且每份样本是阳性结果的概率为.

1)假设有5份血液样本,其中只有2份为阳性,若采取逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;

2)现取其中份血液样本,记采用逐份检验方式,样本需要检验的次数为,采用混合检验方式,样本需要检验的总次数为.

i)试运用概率统计知识,若,试求P关于k的函数关系式

ii)若,采用混合检验方式可以使得这k份血液样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面

(Ⅰ)求证:平面平面

(Ⅱ)若,二面角,求的值.

查看答案和解析>>

同步练习册答案