【题目】设数列的前项和为,,.
(1)求数列的通项公式;
(2)设数列满足:
对于任意,都有成立.
①求数列的通项公式;
②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
【答案】(1),.(2)①,.②见解析.
【解析】分析:(1)当时,类比写出,两式相减整理得,当时,求得,从而求得数列的通项公式.;
(2)①将代入已知条件,用与(1)相似的方法,变换求出数列的通项公式;
②由的通项公式分析,得…,假设存在三项,,成等差数列,且,则,即,根据数列的单调性,化简得,将或代入已知条件,即可得到结论.
详解:解:(1)由, ①
得, ②
由①-②得,即
对①取得,,所以,所以为常数,
所以为等比数列,首项为1,公比为,即,.
(2)①由,可得对于任意有
, ③
则, ④
则, ⑤
由③-⑤得,
对③取得,也适合上式,
因此,.
②由(1)(2)可知,
则,
所以当时,,即,
当时,,即在且上单调递减,
故…,
假设存在三项,,成等差数列,其中,,,
由于…,可不妨设,则(*),
即,
因为,,且,则且,
由数列的单调性可知,,即,
因为,所以,
即,化简得,
又且,所以或,
当时,,即,由时,,此时,,不构成等差数列,不合题意,
当时,由题意或,即,又,代入(*)式得,
因为数列在且上单调递减,且,,所以,
综上所述,数列中存在三项,,或,,构成等差数列.
科目:高中数学 来源: 题型:
【题目】已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲、乙两个盒内各任取2个球。
(1)求取出的4个球中没有红球的概率;
(2)求取出的4个球中恰有1个红球的概率;
(3)设为取出的4个球中红球的个数,求的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由直三棱柱和四棱锥构成的几何体中,,平面平面
(I)求证:;
(II)若M为中点,求证:平面;
(III)在线段BC上(含端点)是否存在点P,使直线DP与平面所成的角为?若存在,求得值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,().
(1)若曲线在点处的切线方程为,求实数am的值;
(2)关于x的方程能否有三个不同的实根?证明你的结论;
(3)若对任意恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)如图,长方形材料中,已知,.点为材料内部一点,于,于,且,. 现要在长方形材料中裁剪出四边形材料,满足,点、分别在边,上.
(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;
(2)试确定点在上的位置,使得四边形材料的面积最小,并求出其最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:
根据该折线图可知,下列说法错误的是( )
A. 该超市2018年的12个月中的7月份的收益最高
B. 该超市2018年的12个月中的4月份的收益最低
C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为,市民之间选择意愿相互独立.
(1)从问卷市民中随机抽取4人,记总得分为随机变量,求的分布列和数学期望;
(2)(i)若从问卷市民中随机抽取人,记总分恰为分的概率为,求数列的前10项和;
(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为分的概率为(比如:表示累计得分为1分的概率,表示累计得分为2分的概率,),试探求与之间的关系,并求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱 ABC﹣A1B1C1 中,AB 1 ,若二面角 C AB C1 的大小为 60°,则点 C 到平面 ABC1 的距离为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com