精英家教网 > 高中数学 > 题目详情

【题目】己知二次函数均为实常数,)的最小值是0,函数的零点是,函数满足,其中,为常数.

1)已知实数满足、,且,试比较的大小关系,并说明理由;

2)求证:

【答案】1;理由见解析;(2)证明见解析

【解析】

1)由二次函数的性质及根与系数的关系可得到:①,②,③,求解方程组可得到的解析式,据此可得到的解析式,最后对作差并化简变形即可比较大小;

2)由(1)知,若,且,则,令,其中,满足上述条件,故,由此即可证明结论.

1)由二次函数的最小值为0可知,①,

的零点是

由根与系数的关系可得,②,③,

由①②③可得(舍去),由可得

所以.

根据条件,

,且,所以

2)由(1)知,

,且,则

,其中,则,且

所以,即,其中

,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.

(Ⅰ)求得分在上的频率;

(Ⅱ)求社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在间的人数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为的正方形与梯形所在的平面互相垂直,已知,点在线段.

1)证明:平面平面

2)判断点的位置,使得平面与平面所成的锐二面角为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设顶点在原点,焦点在轴上的拋物线过点,过作抛物线的动弦 ,并设它们的斜率分别为 .

(Ⅰ)求拋物线的方程;

(),求证:直线的斜率为定值,并求出其值;

III)若,求证:直线恒过定点,并求出其坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有两对情侣都打算从巴黎、厦门、马尔代夫、三亚、泰国这五个地方选取一个地方拍婚纱照,且这两对情侣选择的地方不同,则这两对情侣都选在国外拍婚纱照的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一场娱乐晚会上, 5位民间歌手(15)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1, 不选2, 另在35号中随机选2. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在15号中随机选3名歌手.

(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;

(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米.

2007年

2008年

2009年

2010年

2011年

2012年

2013年

2014年

2015年

2016年

城镇

18.66

20.25

22.79

25

27.1

28.3

31.6

32.9

34.6

36.6

农村

23.3

24.8

26.5

27.9

30.7

32.4

34.1

37.1

41.2

45.8

(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;

(Ⅱ)在给出的10年数据中,随机抽取三年,记为同年中农村人均住房建筑面积超过城镇人均住房建筑面积4平方米的年数,求的分布列和数学期望

(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为,农村人均住房面积的方差为,判断的大小.(只需写出结论).

查看答案和解析>>

同步练习册答案