精英家教网 > 高中数学 > 题目详情
已知定点F(1,0),动点P在y轴(不含原点)上运动,过点P作线段PM交x轴于点M,使
MP
PF
=0
;再延长线段MP到点N,使
MP
=
PN

(Ⅰ)求动点N的轨迹C的方程;
(Ⅱ)直线L与轨迹C交于A、B两点,如果
OA
OB
=-4且|
AB
|=4
6
,求直线L的方程.
分析:(Ⅰ)直接利用条件求方程.
(2)分斜率不存在和斜率存在两种情况求直线方程,运用弦长公式.
解答:解:(Ⅰ)设N(x,y),P(0,p),
由题意知,P为MN的中点,∴M(-x,2p-y),
又M在x轴上,∴2p-y=0,即p=
y
2
,∴P(0,
y
2
),M(-x,0)
PM
PF
=0
,∴(-x,-
y
2
)×(1,-
y
2
)=0,∴y2=4x(x>0)
∴动点N的轨迹C的方程为y2=4x(x>0)
(Ⅱ)若直线L的斜率不存在,设直线L的方程为x=a>0,
此时,A(a,2
a
),B(a,-2
a
),
OA
OB
=a2-4a=-4,
∴a=2,
AB
=(0,-4
2
)
,|AB|=4
2
¹4
6
,不符合题意,舍去.
∴直线L的斜率存在.
设直线L的方程为y=kx+b,A(
y
2
1
4
y1)
、B(
y
2
2
4
y2)

y=kx+b
y2=4x
消去y整理得,ky2-4y+4b=0,
△=16-16kb>0,y1+y2=
4
k

y1y2=
4b
k
OA
OB
=
y
2
1
y
2
2
16
+y1y2
=
b2+4kb
k2
=-4,
∴b=-2k,∴y1y2=-8
|AB|=
(1+
1
k2
)[(y1+y2)2-4y1y2]
=
k2+1
k2
(
16
k2
+32)
=
4
k2
(k2+1)(1+2k2)

|AB|=4
6
4
k2
(k2+1)(1+2k2)
=4
6

4k4-3k2-1=0
∴k=±1∴当k=1时,b=-2,
当k=-1时,b=2;
所以直线L的方程为 y=x-2或y=-x+2.
点评:注意分类讨论的解题思想,运用弦长公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知定点F(1,0),动点P在y轴上运动,过点P作PM⊥PF并交x轴于M点,延长MP到N,使|PN|=|PM|.
(1)求动点N的轨迹C的方程;
(2)直线l与动点N的轨迹C交于A、B两点,若
OA
OB
=-4,且4
6
≤|AB|≤4
30
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(1,0),动点P(异于原点)在y轴上运动,连接FP,过点P作PM交x轴于点M,并延长MP到点N,且
PM
PF
=0
|
PN
|=|
PM
|

(1)求动点N的轨迹C的方程;
(2)若直线l与动点N的轨迹交于A、B两点,若
OA
OB
=-4
4
6
≤|AB|≤4
30
,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(1,0),F′(-1,0),动点P满足|
PF
|,
2
2
|
FF′
|,|PF′|成等差数列
(1)求动点P的轨迹E的方程
(2)过点F(1,0)且与x轴不重合的直线l与E交于M、N两点,以MN为对角线的正方形的第三个顶点恰在y轴上,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)如图,已知定点F(-1,0),N(1,0),以线段FN为对角线作周长是4
2
的平行四边形MNEF.平面上的动点G满足|
GO
|=2(O为坐标原点)
(I)求点E、M所在曲线C1的方程及动点G的轨迹C2的方程;
(Ⅱ)已知过点F的直线l交曲线C1于点P、Q,交轨迹C2于点A、B,若|
AB
|∈(2
3
15
),求△NPQ内切圆的半径的取值范围.

查看答案和解析>>

同步练习册答案