精英家教网 > 高中数学 > 题目详情
6.将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,观察向上的点数,求:
(1)两数之积是6的倍数的概率;
(2)设第一次,第二次抛掷向上的点数分别为x、y,则logx2y=1的概率是多少;
(3)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在直线x-y=3的下方区域的概率.

分析 将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,共有36种不同情况;
(1)两数之积是6的倍数的情况有15种,
(2)满足logx2y=1,即x=2y的情况有3种,
(3)满足点(x,y)在直线x-y=3的下方区域,即x-y>3的情况有3种,
代入概率公式,可得答案.

解答 解:将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,共有36种不同情况;
(1)两数之积是6的倍数的情况有:
(1,6),(2,3),(2,6),(3,2),(3,4),
(3,6),(4,3),(4,6),(5,6),(6,1),
(6,2),(6,3),(6,4),(6,5),(6,6),共15个,
故两数之积是6的倍数的概率P=$\frac{15}{36}$=$\frac{5}{12}$;
(2)若logx2y=1,则x=2y,
满足条件的情况有:(2,1),(4,2),(6,3)共3种;
故logx2y=1的概率P=$\frac{3}{36}$=$\frac{1}{12}$;
(3)满足点(x,y)在直线x-y=3的下方区域,即x-y>3的情况有:
(5,1),(6,1),(6,2)共3种;
故点(x,y)在直线x-y=3的下方区域的概率P=$\frac{3}{36}$=$\frac{1}{12}$;

点评 本题考查的知识点古典概型概率计算公式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列各组函数中,表示同一函数的是(  )
A.$y=x+1与y=\frac{{{x^2}+x}}{x}$B.$f(x)=\frac{x^2}{{{{({\sqrt{x}})}^2}}}与g(x)=x$
C.$f(x)=x\frac{|x|}{x}与f(t)=\left\{\begin{array}{l}t(t>0)\\-t(t<0)\end{array}\right.$D.$f(x)=|x|与g(x)=\left\{\begin{array}{l}x(x>0)\\-x(x<0)\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.图为某个几何体的三视图,则该几何体的表面积为(  )
A.32B.16+16$\sqrt{2}$C.48D.16+32$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}\frac{x+2}{x}≥2\\|2x-1|≤1\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知不交于同一点的三条直线l1:4x+y-4=0,l2:mx+y=0,l3:x-my-4=0
(1)当这三条直线不能围成三角形时,求实数m的值.
(2)当l3与l1,l2都垂直时,求两垂足间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某算法的流程图如图所示,记输出的数组(x,y)依次为(x1,y1),(x2,y2),…(x3,y3)…,若程序运行中输出的一个数组是(9,y),则y=-4;程序结束时,共输出(x,y)的组数为1008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.棱长为3的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,求图中三角形的面积、该球的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn ,点(n,$\frac{{S}_{n}}{n}$)在直线y=2x+1上,数列{bn}满足$\frac{{b}_{1}-1}{3}$+$\frac{{b}_{2}-1}{{3}^{2}}$+…+$\frac{{b}_{n}-1}{{3}^{n}}$=an(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)是否存在常数p(p≠-1),使数列{$\frac{{T}_{n}-n}{3({3}^{n}+p)}$}是等比数列?若存在,求出p的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.判断向量$\overrightarrow{a}与\overrightarrow{b}$否共线:
(1)$\overrightarrow{a}$=-$\frac{3}{2}$$\overrightarrow{e}$,$\overrightarrow{b}$=2$\overrightarrow{e}$(e为非零向量);
(2)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$($\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为非零且不共线的向量);
(3)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$(,$\overrightarrow{{e}_{2}}$为非零且不共线的向量).

查看答案和解析>>

同步练习册答案