精英家教网 > 高中数学 > 题目详情
3.数列{an}中,Sn=2n-1,求an和a8

分析 当n=1时,由a1=S1求的数列首项;当n≥2时,an=Sn-Sn-1,整理后验证首项得答案;在通项公式中取n=8求
得a8

解答 解:由Sn=2n-1,得
a1=S1=1,
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}={2}^{n}-1-({2}^{n-1}-1)={2}^{n-1}$,
验证n=1时上式成立,
∴${a}_{n}={2}^{n-1}$;
${a}_{8}={2}^{7}=128$.

点评 本题考查数列递推式,考查了由数列的前n项和求数列的通项公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求数列$\frac{1}{3}$,$\frac{5}{{3}^{2}}$,$\frac{9}{{3}^{3}}$,…,$\frac{4n-3}{{3}^{n}}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,满足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
(1)求证:Sn=2n-1an
(2)设bn=$\frac{{a}_{n}}{{a}_{n+1}}$,求数列{bn}的前n项和Tn
(3)对于(2)中Tn,求满足T${\;}_{{2}^{m}}$<2013的正整数m的集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.讨论函数f(x)=|1-x|-kx(k∈R)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知值域为[-1,+∞)的二次函数f(x)满足f(-1+x)=f(-1-x),且方程f(x)=0两个实数根x1,x2满足|x1-x2|=2
(1)求f(x)的表达式.
(2)记max{a,b}表示a和b中的较大者,min{a,b}表示a和b中的较小者,g(x)=f(x)-kx在区间x∈[-1,2]内的最大值为max{f(2),f(-1)},min{f(2),f(-1)},求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:已知a,b分别为x2-12x+9=0的两根,且a<b,求$\frac{{a}^{\frac{1}{2}}-{b}^{\frac{1}{2}}}{{a}^{\frac{1}{2}}+{b}^{\frac{1}{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是公比不为1的等比数列,数列{bn}满足bn=anan+1(n∈N*),试问{bn}是什么数列,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设U=R,求∁UA:
(1)A={x|x≥-2};
(2)A={x|x<5};
(3)A={x|-2<x≤1};
(4)A={x|x<0或x≥3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设奇函数f(x)满足f(x)=log2x-1(x>0),则{x|f(x+1)>0}=(  )
A.{x|x<-2或x>2}B.{x|-2<x<0或x>3}C.{x|x<-3或-1<x<1}D.{x|-3<x<-1或x>1}

查看答案和解析>>

同步练习册答案