精英家教网 > 高中数学 > 题目详情

【题目】正方体 中, 的中点为 的中点为 ,则异面直线 所成的角是( )
A.
B.
C.
D.

【答案】D
【解析】

取AA1中点P,连接BP,则BP∥CN,由Rt△ABP≌Rt△BB1M
可得∠DMB=∠APB,∴∠DMB+∠DBM=∠APB+∠DBM=90°,
∴∠BDM=90°,即B1M⊥BP,∴B1M⊥CN.∴异面直线B1M与CN所成角的度数为90°. 所以答案是:D.
【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将下列集合用区间表示出来:
(1)
(2)
(3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论不正确的是(填序号).
①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】里约热内卢奥运会正在如火如荼的进行,奥运会纪念品销售火爆,已知某种纪念品的单价是5元,买x(x∈{1,2,3,4,5})件该纪念品需要y元.试用函数的三种表示法表示函数y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的图象关于y轴对称,当x∈(0,+∞)时,f(x)=log2x,若a=f(﹣3),b=f( ),c=f(2),则a,b,c的大小关系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项的和为Sn , 且Sn+ an=1(n∈N*
(1)求{an}的通项公式;
(2)设bn=﹣log3(1﹣Sn),设Cn= ,求数列{Cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的参数方程为 .再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.
(1)求圆C的极坐标方程;
(2)设圆C与直线l交于点A、B,求|MA||MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设[x]表示不超过x的最大整数,如:[π]=3,[﹣4.3]=﹣5.给出下列命题: ①对任意实数x,都有[x]﹣x≤0;
②若x1≤x2 , 则[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函数f(x)= ,则y=[f(x)]+[f(﹣x)]的值域为{﹣1,0}.
其中所有真命题的序号是

查看答案和解析>>

同步练习册答案