分析 (1)利用递推关系、等比数列的通项公式即可得出;
(2)利用等比数列的前n项和公式即可得出.
解答 (1)证明:∵a1+a2+…+an+2n=$\frac{1}{2}$(an+1+1),
∴当n≥2时,a1+a2+…+an-1+2n-1=$\frac{1}{2}$(an+1),
∴an+2n-1=$\frac{1}{2}({a}_{n+1}-{a}_{n})$,
化为an+1=3an+2n,
变形为:an+1+2n+1=3$({a}_{n}+{2}^{n})$,
∴数列{an+2n}是等比数列,首项为3,公比为3.
(2)解:由(1)可得:an+2n=3n,
∴an=3n-2n,
∴数列{an}的前n项和Sn=$\frac{3({3}^{n}-1)}{3-1}$-$\frac{2({2}^{n}-1)}{2-1}$=$\frac{{3}^{n+1}}{2}$-2n+1+$\frac{1}{2}$.
点评 本题考查了递推关系、等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2x+y-2016=0 | B. | 2x-y-2016=0 | C. | 2x+y+2016=0 | D. | 2x-y+2016=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{e}{2}$) | B. | (0,$\sqrt{e}$) | C. | ($\frac{1}{e}$,$\frac{e}{2}$) | D. | ($\frac{e}{2}$,$\sqrt{e}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com