精英家教网 > 高中数学 > 题目详情

【题目】某市一农产品近六年的产量统计如下表:

年份

2013

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

6

年产量(千吨)

5.1

5.3

5.6

5.5

6.0

6.1

观察表中数据看出,可用线性回归模型拟合的关系.

(1)根据表中数据,将以下表格空白部分的数据填写完整,并建立关于的线性回归方程

总和

均值

1

2

3

4

5

6

5.1

5.3

5.6

5.5

6.0

6.1

1

4

9

16

25

36

5.1

10.6

16.8

22

30

36.6

121.1

(2)若在2025年之前该农产品每千克的价格(单位:元)与年产量满足的关系式为,且每年该农产品都能全部销售.预测在2013~2025年之间,某市该农产品的销售额在哪一年达到最大.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为: .

【答案】(1)见解析;(2)2020年

【解析】

(1)根据题中数据,先完善表格;再由 ,求出,进而可求出结果;

(2)先由题意得到,进而可得出结果.

解:(1)数据补充如下:

总和

均值

1

2

3

4

5

6

3.5

5.1

5.3

5.6

5.5

6.0

6.1

5.6

1

4

9

16

25

36

91

5.1

10.6

16.8

22

30

36.6

121.1

关于的线性回归方程为.

(2)因为销售额销售额价格,

所以

所以当时,取得最大值.

由回归直线方程知,当时,

而年份代码8对应的年份为2020年,

所以在2013~2025年之间,某市该农产品的销售额在2020年达到最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线abc,若ab共面,bc共面,则ac共面;④若直线l上有一点在平面α外,则l在平面α.其中错误命题的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点垂直于轴的直线与抛物线相交于两点,抛物线两点处的切线及直线所围成的三角形面积为.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个动点,且满足,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面 为线段的中点, 为线段上的动点.

)求证:

)当点满足时,求证:直线平面

)当点是线段中点时,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动点满足的轨迹为曲线.

(1)求曲线的方程;

(2)过定点作直线交曲线两点.为坐标原点,若直线轴垂直,求面积的最大值;

(3),在轴上,是否存在一点,使直线的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,记

1)若,求的值;

2)在锐角中,角的对边分别是,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+x-6y+m=0与直线lx+2y-3=0

1)若直线l与圆C没有公共点,求m的取值范围;

2)若直线l与圆C相交于PQ两点,O为原点,且OPOQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)已知在区间上单调递减,在区间上单调递增,求实数的取值范围.

2)若对任意的,不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家提出的六艺:礼乐射御书数.某校国学社团预在周六开展六艺课程讲座活动,周六这天准备排课六节,每艺一节,排课有如下要求:“不能相邻,“要相邻,则针对六艺课程讲座活动的不同排课顺序共有( )

A.18B.36C.72D.144

查看答案和解析>>

同步练习册答案